Updated Vector Autoregressive Model Incorporating new Information Using the Bayesian Approach

Authors

  • Michael Musyoki Department of Mathematics, Masinde Muliro University of Science and Technology, P. O. Box 190-50100, Kakamega, Kenya
  • David Alilah Department of Mathematics, Masinde Muliro University of Science and Technology, P. O. Box 190-50100, Kakamega, Kenya https://orcid.org/0000-0002-3306-4786
  • David Angwenyi Department of Mathematics, Masinde Muliro University of Science and Technology, P. O. Box 190-50100, Kakamega, Kenya https://orcid.org/0000-0002-6958-2817

DOI:

https://doi.org/10.51867/scimundi.mathematics.4.2.17

Keywords:

Vector Autoregressive, Bayesian Approach, Update, Prediction

Abstract

Vector Autoregressive (VAR) models have been applied extensively in modeling time series due to their high precision when used to forecast. In the VAR development, if we have information up to time t, then a VAR(p) model is fitted. However, if new information at time t + 1, is obtained, then a new VAR(p) model has to be fitted which makes one to go through the process again. Therefore, despite their good performance, a need would arise to incorporate new information that could be obtained after the model has been fitted to update the model instead of fitting a new model each and every time a new information is obtained. This study, therefore, considers incorporating the new information to update the vector autoregressive model of order p using Bayesian approach. First, a VAR model of order 1 is formulated after which this is generalized to the VAR model of order p. We assume that the VAR model is the prior while new information is the likelihood. The performance of updated model is compared with corresponding VAR(p) models and the model is found to perform well based on the small values of the root mean square error (RMSE) in the update and in the prediction for the plots obtained.

Downloads

Download data is not yet available.

References

Abdullah, T. L. (2022). Forecasting time series using Vector Autoregressive Model. International Journal of Nonlinear Analysis and Applications, 13(1), 499-511.

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control (5th ed.). Wiley. ISBN: 978-1-118-67502-1.

Hamzah, L. M., Nabilah, S. U., Usman, M., Virginia, E., & Wamiliana. (2020). Dynamic modeling and forecasting of data export of agricultural commodity by Vector Autoregressive Model. Journal of Southwest Jiaotong University, 55(3). https://doi.org/10.35741/issn.0258-2724.55.3.41 DOI: https://doi.org/10.35741/issn.0258-2724.55.3.41

Hossain, M., Al Amin, A. A., & Islam, A. H. M. S. (2018). Modeling and forecasting of climatic parameters: Univariate SARIMA versus multivariate vector autoregression approach. Journal of the Bangladesh Agricultural University, 16(1), 131-143. https://www.banglajol.info/index.php/JBAU/article/view/36494 DOI: https://doi.org/10.3329/jbau.v16i1.36494

Kalliovirta, L., Niskanen, O., & Heikkila, A. M. (2019). Forecasting milk prices with VAR models: Application to farm gate price in Finland. SSRN. https://ssrn.com/abstract=3473862, http://dx.doi.org/10.2139/ssrn.3473862 DOI: https://doi.org/10.2139/ssrn.3473862

Khairan, R., Firuz, K., & Aswani, K. C. (2022). Forecasting COVID-19: Vector autoregression-based model. Arabian Journal for Science and Engineering, 47, 6851-6860. https://doi.org/10.1007/s13369-021-06526-2 DOI: https://doi.org/10.1007/s13369-021-06526-2

Lutkepohl, H. (2004). Forecasting with VARMA models. European University Institute, Badia Fiesolana I-50016 San Domenico (FI).

Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer. https://doi.org/10.1007/978-3-540-27752-1 DOI: https://doi.org/10.1007/978-3-540-27752-1

Mahler, R. P. S. (2007). Statistical Multisource-Multitarget Information Fusion. Artech House. https://doi.org/10.1201/9781420053098.ch16 DOI: https://doi.org/10.1201/9781420053098.ch16

Elalaoui, O., Fadlaoui, A., Maatala, N., & Ibrahimy, A. (2021). Agriculture and GDP causality nexus in Morocco: Empirical evidence from a VAR approach. International Journal of Agricultural Economics, 6(4), 198-207. https://doi.org/10.11648/j.ijae.20210604.17 DOI: https://doi.org/10.11648/j.ijae.20210604.17

Roush, J., Siopes, K., & Hu, G. (2017). Predicting gross domestic product using autoregressive models. IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), 317-322. https://doi.org/10.1109/SERA.2017.7965745 DOI: https://doi.org/10.1109/SERA.2017.7965745

Saheed, B. A., Kola, Y. K., Adewole, O. G., Muideen, O. A., Saheed, O. J., Muhammed, T. M., Ekundayo, S. O., Olakiitan, A., Magdalene, P., & Oluwole, J. O. (2021). Vector autoregressive modeling of crop production index - Permanent cropland relationship in Nigeria. Annals. Computer Science Series, 19(1).

Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48, 814-844. https://doi.org/10.2307/1912017 DOI: https://doi.org/10.2307/1912017

Stock, H. J., & Watson, W. M. (2001). Vector autoregressions. University of Washington Faculty Publications. https://doi.org/10.1257/jep.15.4.101 DOI: https://doi.org/10.1257/jep.15.4.101

Tiao, G. C., & Box, G. E. P. (1981). Modeling multiple time series with applications. Journal of the American Statistical Association, 76, 802-816.

https://doi.org/10.1080/01621459.1981.10477728, https://doi.org/10.2307/2287575 DOI: https://doi.org/10.1080/01621459.1981.10477728

Quenouille, M. H. (1957). The Analysis of Multiple Time-Series. Griffin.

Yashavanth, B. S., Singh, K. N., Paul, K. A., & Paul, K. R. (2017). Forecasting prices of coffee seeds using vector autoregressive time series model. Indian Journal of Agricultural Sciences, 87(6), 754-758. https://doi.org/10.56093/ijas.v87i6.70960 DOI: https://doi.org/10.56093/ijas.v87i6.70960

Downloads

Published

2024-11-07

How to Cite

Musyoki, M., Alilah, D., & Angwenyi, D. (2024). Updated Vector Autoregressive Model Incorporating new Information Using the Bayesian Approach. SCIENCE MUNDI, 4(2), 178–197. https://doi.org/10.51867/scimundi.mathematics.4.2.17

Most read articles by the same author(s)