In vitro antioxidant activity of haloalkaliphilic fungal extracts from lake Magadi, Kenya

https://doi.org/10.51867/scimundi.5.2.14

Authors

Keywords:

Antioxidant, Extremophiles, Free Radicals, Haloalkaliphilic, Hot-Springs, In vitro, Saline-Alkaline

Abstract

The wide-ranging saline-alkaline ecological setting is steadily acquiring appreciation as a rich source harbouring a repertoire of extremophilic fungal diversity exerting exclusive biological activities ranging from anti-inflammatory, antipyretic, analgesic among other varied medicinal capacities. However, studies characterizing biochemical functionalities from structurally unique haloalkaliphilic fungal biota remain scanty and undocumented. Importantly, saline emitting hot-springs situated in Rift valley soda lakes are gaining recognition as natural reservoirs with enormous fungal microbial community bearing potential for antioxidation capacity. Therefore, we conducted a cross-sectional laboratory based experimental study through random sampling aimed at characterizing in vitro antioxidant activity from haloalkaliphilic fungal strains of Lake Magadi in Kenya. Sample types comprising wet sediments, soils and surface water were cultured in sabouraud’s dextrose agar (SDA), potato dextrose agar (PDA) and malt extract agar (MEA) plates at temperatures of 250c and 410c respectively, for 1-3 weeks. Resulting pure isolates underwent molecular identification. PCR proceeded using ITS-1 & 4 universal primers followed by Sanger sequencing. NCBI’s nBLAST supported molecular identification with ≥90% identity cut-off values. Fermentation and extracts production progressed for 28 days at 250c accompanied by lyophilisation. Yielded freeze-dried extracts were profiled for antioxidant activity through hydroxyl, superoxide, DPPH, hydrogen peroxide, FRAP and lipid peroxidation inhibition assays. Extracts’ total phenolics and flavonoids content were also estimated. IC50 was tabulated based on dose-response curves against standards through linear regression. One-way ANOVA compared means across treatments and Tukey’s post hoc used for pairwise group comparisons. Statistical significance was considered at P≤0.05. Genera Cladosporium exhibited dominance (n=4) among sampled fungal biota. Samples P1, P6, P9 and P5 extracts exhibited maximal scavenging activity at higher concentrations against hydroxyl (76.53% ± 1.27), superoxide (78.90% ± 1.29), H202 (76.19% ± 0.40) and DPPH (80.19% ± 0.94) radicals, respectively. Ferric reductive (0.583 ± 0.005) and lipid peroxidation inhibitive (80.95% ± 1.07) activities for isolate P5 was statistically higher relative to other profiled extracts. Radical scavenging capacity of respective antioxidant standards was substantially higher against assayed extracts. Profound IC50 scavenging effect occurred at extract concentrations between 2.5 - 3.5 mg/ml. P7 extracts revealed peak total phenolic content of 3.61 ± 0.05 mg gallic acid equivalents/mg crude extract at 4mg/ml, while P6 expressed comparable total flavonoid content of 3.32 ± 0.04 mg quercetin equivalents/mg crude extract. Overally, fungi extracts showcased free radicals scavenging ability against reactive species in assorted antioxidant assays. Besides safety profile validation, our extracts demonstrate applicability for antioxidative potential that may further be discerned via comparative in vivo and ex vivo murine experimentation models.  

Downloads

Download data is not yet available.
Dimensions

Acharya, T., & Hare, J. (2022). Sabouraud agar and other fungal growth media. In Laboratory protocols in fungal biology: current methods in fungal biology (pp. 69-86). Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-030-83749-5_2 DOI: https://doi.org/10.1007/978-3-030-83749-5_2

Ahmadinejad, F., Geir Moller, S., Hashemzadeh-Chaleshtori, M., Bidkhori, G., & Jami, M.S. (2017). Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants, 6(3),51.

https://doi.org/10.3390/antiox6030051 DOI: https://doi.org/10.3390/antiox6030051

Alam, A., & Kataria, P. (2021). Assessment of superoxide dismutase, catalase, and peroxidase activities in Aspergillus sp. and Cladosporium sp. Journal of Advanced Scientific Research, 12(03), 249-254.

https://doi.org/10.55218/JASR.202112334 DOI: https://doi.org/10.55218/JASR.202112334

Albracht, S.P., Meijer, A.J., & Rydstrom, J. (2011). Mammalian NADH: ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H2O2-implications for their role in disease, especially cancer. Journal of Bioenergetics and Biomembranes, 43(5), 541-564.

https://doi.org/10.1007/s10863-011-9381-4 DOI: https://doi.org/10.1007/s10863-011-9381-4

AlMatar, M., & Makky, E.A. (2016). Cladosporium cladosporioides from the perspectives of medical and biotechnological approaches. 3 Biotechech, 6(1), 4.

https://doi.org/10.1007/s13205-015-0323-4 DOI: https://doi.org/10.1007/s13205-015-0323-4

Aludatt, M. H., Rababah, T., Alhamad, M.N., Al-Mahasneh, M.A., Almajwal, A., Gammoh, S., & Alli, I. (2017). A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds. Food Chemistry, 218, 99-106.

https://doi.org/10.1016/j.foodchem.2016.09.057 DOI: https://doi.org/10.1016/j.foodchem.2016.09.057

Alvarez-Gomez, F., Korbee, N., & Figueroa, F.L. (2016). Analysis of antioxidant capacity and bioactive compounds in marine macroalgal and lichenic extracts using different solvents and evaluation methods. Ciencias Marinas, 42(4), 271-288. https://doi.org/10.7773/cm.v42i4.2677 DOI: https://doi.org/10.7773/cm.v42i4.2677

Amin, M., Zhang, X.Y., Xu, X.Y., & Qi, S.H. (2020). New citrinin derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z015. Natural Product Research, 34(9), 1219-1226.

https://doi.org/10.1080/14786419.2018.1556266 DOI: https://doi.org/10.1080/14786419.2018.1556266

Apak, R., Calokerinos, A., Gorinstein, S., Segundo, M.A., Hibbert, D.B., Gulçin, I., & Arancibia-Avila, P. (2022). Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). Pure and Applied Chemistry, 94(1), 87-144. https://doi.org/10.1515/pac-2020-0902 DOI: https://doi.org/10.1515/pac-2020-0902

Arora, D.S., & Chandra, P. (2011). Antioxidant activity of Aspergillus fumigatus. International Scholarly Research Notices, 2011(1), 619395. https://doi.org/10.5402/2011/619395 DOI: https://doi.org/10.5402/2011/619395

Averill-Bates, D.A. (2023). The antioxidant glutathione. In Vitamins and hormones (Vol. 121, pp. 109-141). Academic Press. https://doi.org/10.1016/bs.vh.2022.09.002 DOI: https://doi.org/10.1016/bs.vh.2022.09.002

Ayad, R., & Akkal, S. (2019). Phytochemistry and biological activities of Algerian Centaurea and related genera. Studies in Natural Products Chemistry, 63, 357-414. https://doi.org/10.1016/B978-0-12-817901-7.00012-5 DOI: https://doi.org/10.1016/B978-0-12-817901-7.00012-5

Caparica, R., Julio, A., Baby, A.R., de Almeida, T.S., & Costa, J.G. (2020). In vitro cytotoxicity assessment of ferulic, caffeic and p-coumaric acids on human renal cancer cells. Biomedical and Biopharmaceutical Research, 17, 63-74.

https://doi.org/10.19277/bbr.17.1.225 DOI: https://doi.org/10.19277/bbr.17.1.225

Cordiano, R., Di Gioacchino, M., Mangifesta, R., Panzera, C., Gangemi, S., & Minciullo, P.L. (2023). Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: an update. Molecules, 28(16), 5979.

https://doi.org/10.3390/molecules28165979 DOI: https://doi.org/10.3390/molecules28165979

Couto, N., Wood, J., & Barber, J. (2016). The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radical Biology and Medicine, 95, 27-42.

https://doi.org/10.1016/j.freeradbiomed.2016.02.028 DOI: https://doi.org/10.1016/j.freeradbiomed.2016.02.028

Couttolenc, A., Medina, M.E., Trigos, A., & Espinoza, C. (2022). Antioxidant capacity of fungi associated with corals and sponges of the reef system of Veracruz, Mexico. Electronic Journal of Biotechnology, 55, 40-46.

https://doi.org/10.1016/j.ejbt.2021.11.002 DOI: https://doi.org/10.1016/j.ejbt.2021.11.002

Csiszar, J., Horvath, E., Bela, K., & Galle, A. (2016). Glutathione-related enzyme system: glutathione reductase (GR), glutathione transferases (GSTs) and glutathione peroxidases (GPXs). In Redox state as a central regulator of plant-cell stress responses (pp. 137-158). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-44081-1_7 DOI: https://doi.org/10.1007/978-3-319-44081-1_7

Dendouga, W., & Belhamra, M. (2022). Screening of halotolerant microfungi isolated from hypersaline soils of Algerian Sahara for production of hydrolytic enzymes. Journal of Biological Research-Bollettino Della Società Italiana Di Biologia Sperimentale, 95(1). https://doi.org/10.4081/jbr.2022.10167 DOI: https://doi.org/10.4081/jbr.2022.10167

Dewi, R.T., Tachibana, S., Itoh, K., & Ilyas, M. (2012). Isolation of antioxidant compounds from Aspergillus terreus LS01. Journal of Microbial and Biochemical Technology, 4(1), 10-14. https://doi.org/10.4172/1948-5948.1000065 DOI: https://doi.org/10.4172/1948-5948.1000065

Fazi, S., Butturini, A., Tassi, F., Amalfitano, S., Venturi, S., Vazquez, E., & Harper, D.M. (2018). Biogeochemistry and biodiversity in a network of saline-alkaline lakes: Implications of ecohydrological connectivity in the Kenyan Rift Valley. Ecohydrology & Hydrobiology Journal, 18(2), 96-106. https://doi.org/10.1016/j.ecohyd.2017.09.003 DOI: https://doi.org/10.1016/j.ecohyd.2017.09.003

Gulcin, I., & Alwasel, S.H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.

https://doi.org/10.3390/pr11082248 DOI: https://doi.org/10.3390/pr11082248

Hasima, N., & Ozpolat, B. (2014). Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death & Disease, 5(11), e1509-e1509.

https://doi.org/10.1038/cddis.2014.467 DOI: https://doi.org/10.1038/cddis.2014.467

He, L., He, T., Farrar, S., Ji, L., Liu, T., & Ma, X. (2017). Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry, 44(2), 532-553.

https://doi.org/10.1159/000485089 DOI: https://doi.org/10.1159/000485089

Hulikere, M.M., & Joshi, C.G. (2019). Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus-Cladosporium cladosporioides. Process Biochemistry, 82, 199-204.

https://doi.org/10.1016/j.procbio.2019.04.011 DOI: https://doi.org/10.1016/j.procbio.2019.04.011

Hunter, B.B., & Barnett, H.L. (2019). Deuteromycetes (fungi imperfecti). In Handbook of Microbiology (pp. 448-476). CRC Press. https://doi.10.1038/npg.els.0000351

Izhaki, I. (2002). Emodin-a secondary metabolite with multiple ecological functions in higher plants. New Phytologist, 155(2), 205-217. https://doi.10.1046/j.1469-8137.2002.00459.x DOI: https://doi.org/10.1046/j.1469-8137.2002.00459.x

Jaouani, A., Neifar, M., Prigione, V., Ayari, A., Sbissi, I., Ben Amor, S., & Gtari, M. (2014). Diversity and enzymatic profiling of halotolerant micromycetes from Sebkha El Melah, a Saharan salt flat in southern Tunisia. BioMed Research International, 2014(1), 439197. https://doi.org/10.1155/2014/439197 DOI: https://doi.org/10.1155/2014/439197

Jeong, Y.U., & Park, Y.J. (2020). Ergosterol peroxide from the medicinal mushroom Ganoderma lucidum inhibits differentiation and lipid accumulation of 3T3-L1 adipocytes. International Journal of Molecular Sciences, 21(2), 460.

https://doi.org/10.3390/ijms21020460 DOI: https://doi.org/10.3390/ijms21020460

Jiang, S., Liu, H., & Li, C. (2021). Dietary regulation of oxidative stress in chronic metabolic diseases. Foods, 10(8), 1854. https://doi.org/10.3390/foods10081854 DOI: https://doi.org/10.3390/foods10081854

Khan, N., Afroz, F., Begum, M.N., Rony, S. R., Sharmin, S., Moni, F., & Sohrab, M.H. (2018). Endophytic Fusarium solani: A rich source of cytotoxic and antimicrobial napthaquinone and aza-anthraquinone derivatives. Toxicology Reports, 5, 970-976. https://doi.org/10.1016/j.toxrep.2018.08.016 DOI: https://doi.org/10.1016/j.toxrep.2018.08.016

Khoddami, A., Wilkes, M.A., & Roberts, T.H. (2013). Techniques for analysis of plant phenolic compounds. Molecules, 18(2), 2328-2375. https://doi.org/10.3390/molecules18022328 DOI: https://doi.org/10.3390/molecules18022328

Khoubnasabjafari, M., Ansarin, K., & Jouyban, A. (2015). Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. BioImpacts: BI, 5(3), 123. https://doi.org/10.15171/bi.2015.20 DOI: https://doi.org/10.15171/bi.2015.20

Kibiti, C.M., & Afolayan, A.J. (2015). Preliminary phytochemical screening and biological activities of Bulbine abyssinica used in the folk medicine in the Eastern Cape Province, South Africa. Evidence‐based Complementary and Alternative Medicine, 2015(1), 617607. https://doi.org/10.1155/2015/617607 DOI: https://doi.org/10.1155/2015/617607

Kim, J.M., Choi, S.H., Shin, G.H., Lee, J.H., Kang, S.R., Lee, K.Y., & Lee, O.H. (2016). Method validation and measurement uncertainty for the simultaneous determination of synthetic phenolic antioxidants in edible oils commonly consumed in Korea. Food Chemistry, 213, 19-25. https://doi.org/10.1016/j.foodchem.2016.06.053 DOI: https://doi.org/10.1016/j.foodchem.2016.06.053

Kobets, T., Smith, B.P., & Williams, G.M. (2022). Food-borne chemical carcinogens and the evidence for human cancer risk. Foods, 11(18), 2828. https://doi.org/10.3390/foods11182828 DOI: https://doi.org/10.3390/foods11182828

Kotha, R.R., Tareq, F.S., Yildiz, E., & Luthria, D.L. (2022). Oxidative stress and antioxidants-A critical review on in vitro antioxidant assays. Antioxidants, 11(12), 2388. https://doi.org/10.3390/antiox11122388 DOI: https://doi.org/10.3390/antiox11122388

Kupina, S., Fields, C., Roman, M. C., & Brunelle, S. L. (2018). Determination of total phenolic content using the Folin-C assay: Single-laboratory validation, first action 2017.13. Journal of AOAC International, 101(5), 1466-1472.

https://doi.org/10.5740/jaoacint.18-0031 DOI: https://doi.org/10.5740/jaoacint.18-0031

Lanzen, A., Simachew, A., Gessesse, A., Chmolowska, D., Jonassen, I., & Ovreas, L. (2013). Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLoS One, 8(8), e72577.

https://doi.org/10.1371/journal.pone.0072577 DOI: https://doi.org/10.1371/journal.pone.0072577

Liu, R., & Mabury, S.A. (2020). Synthetic phenolic antioxidants: A review of environmental occurrence, fate, human exposure, and toxicity. Environmental Science & Technology, 54(19), 11706-11719.

https://doi.org/10.1021/acs.est.0c05077 DOI: https://doi.org/10.1021/acs.est.0c05077

Malik, A., Kushnoor, A., Saini, V., Singhal, S., Kumar, S., & Yadav, Y. C. (2011). In vitro antioxidant properties of Scopoletin. Journal of Chemical and Pharmaceutical Research, 3(3), 659-665. https://doi.10.52711/0974-360X.2021.00634

Manimaran, A., & Manoharan, S. (2018). Tumor preventive efficacy of emodin in 7, 12-Dimethylbenz [a] Anthracene-induced oral carcinogenesis: a histopathological and biochemical approach. Pathology & Oncology Research, 24(1), 19-29. https://doi.org/10.1007/s12253-017-0205-7 DOI: https://doi.org/10.1007/s12253-017-0205-7

Mishra, R.C., Goel, M., Barrow, C.J., & Deshmukh, S.K. (2020). Endophytic fungi-an untapped source of potential antioxidants. Current Bioactive Compounds, 16(7), 944-964. https://doi.org/10.2174/1573407215666191007113837 DOI: https://doi.org/10.2174/1573407215666191007113837

Moriasi, G., Ireri, A., & Ngugi, M.P. (2020). In vitro antioxidant activities of the aqueous and methanolic stem bark extracts of Piliostigma thonningii (Schum.). Journal of Evidence-Based Integrative Medicine, 25, 2515690X20937988.

https://doi.org/10.1177/2515690X20937988 DOI: https://doi.org/10.1177/2515690X20937988

Moubasher, A.H., Abdel-Sater, M.A., & Soliman, Z.S. (2018). Diversity of yeasts and filamentous fungi in mud from hypersaline and freshwater bodies in Egypt. Czech Mycology, 70(1), 1-32. https://doi.org/10.33585/cmy.70101 DOI: https://doi.org/10.33585/cmy.70101

Ndwigah, I.F., Bogai, H.I., Wanyoike, W., & Mwirichia, R.K. (2015). Characterization, enzymatic activity, and secondary metabolites of fungal isolates from lake Sonachi in Kenya. Journal of Pharmacy & Biological Sciences, 10(2), 65-76. https://doi.10.9790/3008-10216576

Orwa, P., Mugambi, G., Wekesa, V., & Mwirichia, R. (2020). Isolation of haloalkaliphilic fungi from Lake Magadi in Kenya. Heliyon, 6(1), e02823. https://doi.org/10.1016/j.heliyon.2019.e02823 DOI: https://doi.org/10.1016/j.heliyon.2019.e02823

Pan, Y., Qin, R., Hou, M., Xue, J., Zhou, M., Xu, L., & Zhang, Y. (2022). The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions. Separation and Purification Technology, 300, 121831.

https://doi.org/10.1016/j.seppur.2022.121831 DOI: https://doi.org/10.1016/j.seppur.2022.121831

Pavithra, K., & Vadivukkarasi, S. (2015). Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. Food Science and Human Wellness, 4(1), 42-46.

https://doi.org/10.1016/j.fshw.2015.02.001 DOI: https://doi.org/10.1016/j.fshw.2015.02.001

Pitt, J.I., & Hocking, A.D. (2022). Primary keys and miscellaneous fungi. In Fungi and Food Spoilage (pp. 67-199). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-85640-3_5 DOI: https://doi.org/10.1007/978-3-030-85640-3_5

Prahadeesh, N., Sithambaresan, M., & Mathiventhan, U. (2018). A study on hydrogen peroxide scavenging activity and ferric reducing ability of simple coumarins. Emerging Science Journal, 2(6), 417-427.

https://doi.org/10.28991/esj-2018-01161 DOI: https://doi.org/10.28991/esj-2018-01161

Raddadi, N., Cherif, A., Daffonchio, D., Neifar, M., & Fava, F. (2015). Biotechnological applications of extremophiles, extremozymes and extremolytes. Applied Microbiology and Biotechnology, 99(19), 7907-7913.

https://doi.org/10.1007/s00253-015-6874-9 DOI: https://doi.org/10.1007/s00253-015-6874-9

Rani, A., Saini, K.C., Bast, F., Mehariya, S., Bhatia, S.K., Lavecchia, R., & Zuorro, A. (2021). Microorganisms: a potential source of bioactive molecules for antioxidant applications. Molecules, 26(4), 1142.

https://doi.org/10.3390/molecules26041142 DOI: https://doi.org/10.3390/molecules26041142

Rossi, M., Wen, K., Caruso, F., & Belli, S. (2020). Emodin scavenging of superoxide radical includes π-π interaction. X-ray crystal structure, hydrodynamic voltammetry and theoretical studies. Antioxidants, 9(3), 194.

https://doi.org/10.3390/antiox9030194 DOI: https://doi.org/10.3390/antiox9030194

Ruwizhi, N., & Aderibigbe, B.A. (2020). Cinnamic acid derivatives and their biological efficacy. International Journal of Molecular Sciences, 21(16), 5712. https://doi.org/10.3390/ijms21165712 DOI: https://doi.org/10.3390/ijms21165712

Salano, O.A., Makonde, H.M., Kasili, R.W., Wangai, L.N., Nawiri, M.P., & Boga, H.I. (2017). Diversity and distribution of fungal communities within the hot springs of soda lakes in the Kenyan rift valley. African Journal of Microbiology Research, 11(19), 764-775. https://doi.10.5897/AJMR2017.8510

Salano, O.A., Makonde, H.M., Kasili, R.W., & Boga, H.I. (2018). Isolation and characterization of fungi from a hot-spring on the shores of Lake Bogoria, Kenya. Journal of Yeast and Fungal Research, 9(1), 1-13.

https://doi.org/10.5897/JYFR2018.0182 DOI: https://doi.org/10.5897/JYFR2018.0182

Sallam, A., El-Metwally, M., Sabry, M.A., & Elsbaey, M. (2023). Cladamide: a new ceramide from the endophytic fungus Cladosporium cladosporioides. Natural Product Research, 37(7), 1082-1091.

https://doi.org/10.1080/14786419.2021.1986709 DOI: https://doi.org/10.1080/14786419.2021.1986709

Saravanakumar, K., Rajendren, N., Kathiresan, K., & Wang, M.H. (2020). Medicinal Drug‐related Bioactive Agents from Marine Fungi. Encyclopedia of Marine Biotechnology, 4, 2173-2190. https://doi.org/10.1002/9781119143802.ch98 DOI: https://doi.org/10.1002/9781119143802.ch98

Shraim, A.M., Ahmed, T.A., Rahman, M.M., & Hijji, Y.M. (2021). Determination of total flavonoid content by aluminium chloride assay: A critical evaluation. Lwt, 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932 DOI: https://doi.org/10.1016/j.lwt.2021.111932

Talvenmaki, H., Lallukka, N., Survo, S., & Romantschuk, M. (2019). Fenton's reaction-based chemical oxidation in suboptimal conditions can lead to mobilization of oil hydrocarbons but also contribute to the total removal of volatile compounds. Environmental Science and Pollution Research, 26(33), 34670-34684.

https://doi.org/10.1007/s11356-019-06547-3 DOI: https://doi.org/10.1007/s11356-019-06547-3

Tepsic, K., Gunde-Cimerman, N., & Frisvad, J.C. (1997). Growth and mycotoxin production by Aspergillus fumigatus strains isolated from a saltern. FEMS Microbiology Letters, 157(1), 9-12. DOI: https://doi.org/10.1016/S0378-1097(97)00444-8

https://doi.org/10.1111/j.1574-6968.1997.tb12745.x DOI: https://doi.org/10.1111/j.1574-6968.1997.tb12745.x

Venkatachalam, M., Gerard, L., Milhau, C., Vinale, F., Dufosse, L., & Fouillaud, M. (2019). Salinity and temperature influence growth and pigment production in the marine-derived fungal strain Talaromyces albobiverticillius 30548. Microorganisms, 7(1), 10. https://doi.org/10.3390/microorganisms7010010 DOI: https://doi.org/10.3390/microorganisms7010010

Vitale, G.A., Coppola, D., Palma Esposito, F., Buonocore, C., Ausuri, J., Tortorella, E., & de Pascale, D. (2020). Antioxidant molecules from marine fungi: Methodologies and perspectives. Antioxidants, 9(12), 1183.

https://doi.org/10.3390/antiox9121183 DOI: https://doi.org/10.3390/antiox9121183

Vladkova, T., Georgieva, N., Staneva, A., & Gospodinova, D. (2022). Recent progress in antioxidant active substances from marine biota. Antioxidants, 11(3), 439. https://doi.org/10.3390/antiox11030439 DOI: https://doi.org/10.3390/antiox11030439

Vona, R., Gambardella, L., Cittadini, C., Straface, E., & Pietraforte, D. (2019). Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxidative Medicine and Cellular Longevity, 2019(1), 8267234.

https://doi.org/10.1155/2019/8267234 DOI: https://doi.org/10.1155/2019/8267234

Wang, L., Han, X., Zhu, G., Wang, Y., Chairoungdua, A., Piyachaturawat, P., & Zhu, W. (2018). Polyketides from the endophytic fungus Cladosporium sp. isolated from the mangrove plant Excoecaria agallocha. Frontiers in Chemistry, 6, 344. https://doi.org/10.3389/fchem.2018.00344 DOI: https://doi.org/10.3389/fchem.2018.00344

Williams, G.M., & Iatropoulos, M.J. (2017). Anticarcinogenic effects of synthetic phenolic antioxidants. Oxidants, antioxidants and free radicals, 341-350. eBook ISBN: 9780203744673

https://doi.org/10.1201/9780203744673-20 DOI: https://doi.org/10.1201/9780203744673-20

Wingfield, L.K., Jitprasitporn, N., & Che-Alee, N. (2023). Isolation and characterization of halophilic and halotolerant fungi from man-made solar salterns in Pattani Province, Thailand. PLoS One, 18(2), e0281623.

https://doi.org/10.1371/journal.pone.0281623 DOI: https://doi.org/10.1371/journal.pone.0281623

Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larranaga, M. R., Wang, X., & Martínez, M.A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 353, 129488. https://doi.10.1016/j.foodchem.2021.129488

https://doi.org/10.1016/j.foodchem.2021.129488 DOI: https://doi.org/10.1016/j.foodchem.2021.129488

Younus, H. (2018). Therapeutic potentials of superoxide dismutase. International Journal of Health Sciences, 12(3), 88. PMID: 29896077

Zhang, C., Bruins, M. E., Yang, Z. Q., Liu, S. T., & Rao, P. F. (2016). A new formula to calculate activity of superoxide dismutase in indirect assays. Analytical Biochemistry, 503, 65-67.

https://doi.org/10.1016/j.ab.2016.03.014 DOI: https://doi.org/10.1016/j.ab.2016.03.014

Zhang, Y., Cai, P., Cheng, G., & Zhang, Y. (2022). A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Natural Product Communications, 17(1), 1934578X211069721.

https://doi.org/10.1177/1934578X211069721 DOI: https://doi.org/10.1177/1934578X211069721

Published

2025-10-04

How to Cite

Kiboi, N., Abonyo, C., Ouko, N., Kimani, J., Ngugi, M. P., Marera, D., & Were, T. (2025). In vitro antioxidant activity of haloalkaliphilic fungal extracts from lake Magadi, Kenya. SCIENCE MUNDI, 5(2), 140–157. https://doi.org/10.51867/scimundi.5.2.14