Tracking biomarkers of iron dysregulation across HIV treatment spectrum: Insights from erythroferrone, hepcidin and hephaestin levels in Western Kenya

https://doi.org/10.51867/scimundi.5.2.8

Authors

Keywords:

Anemia, ART Adherence, Erythroferrone, HIV, Hepcidin, Hephaestin, Iron Deficiency, Inflammation, Western Kenya

Abstract

Anaemia is a frequent comorbidity in HIV infection, driven in part by disruptions in iron regulation. While the role of hepcidin is well documented, the contributions of erythroferrone and hephaestin remain underexplored, especially in African cohorts. This study investigated the differential expression of these biomarkers across defined sub-categories of antiretroviral therapy (ART) exposure and adherence in Western Kenya with an aim to elucidate their contributions to iron deficiency anaemia (IDA) in HIV-infected individuals. A cross-sectional study was conducted at Busia County Referral Hospital among 163 adults comprising HIV infected ART-adherent (n = 47), ART-naive (n = 23), non-adherent (n = 42), and healthy control (n = 51) study groups. Serum levels of erythroferrone, hepcidin, and hephaestin were quantified using ELISA. Iron status and haemoglobin were assessed using standard hematologic and biochemical methods. Logistic regression models were used to evaluate associations between biomarker levels, ART status, and IDA risk. ART non-adherence and ART-naivety were associated with significantly higher prevalence of IDA (65.4% and 50.0%, respectively) compared to ART adherence (17.6%, P = 0.009). Erythroferrone levels were significantly suppressed in ART-naive and non-adherent individuals (median: 21.7 and 31.2 ng/mL, respectively) compared to adherent and healthy controls (38.1 and 50.2 ng/mL, P < 0.0001). Elevated hepcidin levels were observed in ART-naive and non-adherent participants (113.0 and 84.1 ng/mL, respectively), aligning with functional iron deficiency. Hephaestin levels were markedly reduced in untreated and non-adherent groups, implicating impaired iron absorption. Binary logistic regression confirmed ART non-adherence (AOR = 9.97, 95% CI: 2.66–37.41), low erythroferrone (AOR = 0.094, 95% CI: 0.01–0.72), elevated hepcidin (AOR = 3.36, 95% CI: 1.36–8.25), and reduced hephaestin (AOR = 1.137 per µg/L decrease, 95% CI: 1.07–1.20) as independent predictors of IDA. ART status exerts a profound influence on iron homeostasis in PLWHIV through modulation of key regulatory proteins. Suppression of erythroferrone, elevation of hepcidin, and depletion of hephaestin underlie a triad of dysregulation that drives iron-restricted erythropoiesis. These findings call for integrative diagnostic frameworks that include iron biomarkers beyond ferritin, and underscore the urgent need to address ART non-adherence as a modifiable determinant of haematologic health in HIV.

Downloads

Download data is not yet available.
Dimensions

Abioye, A. I., Andersen, C. T., Sudfeld, C. R., & Fawzi, W. W. (2020). Anemia, iron status, and HIV: A systematic review of the evidence. Advances in Nutrition, 11(5), 1334-1363. https://doi.org/10.1093/advances/nmaa037 DOI: https://doi.org/10.1093/advances/nmaa037

Abioye, A. I., Sudfeld, C. R., Hughes, M. D., Aboud, S., Muhihi, A., Ulenga, N., Nagu, T. J., Wang, M., Mugusi, F., & Fawzi, W. W. (2023). Iron status among HIV-infected adults during the first year of antiretroviral therapy in Tanzania. HIV Medicine, 24(4), 398-410. https://doi.org/10.1111/hiv.13396 DOI: https://doi.org/10.1111/hiv.13396

Abonyo, C., Shaviya, N., Budambula, V., & Were, T. (2020). Anemia burden, types and associated risk factors among Kenyan human immunodeficiency virus-1 and mycobacterium tuberculosis co-infected injection substance users. Ethiopian Journal of Health Sciences, 30(5), 661. https://doi.org/10.4314/ejhs.v30i5.4 DOI: https://doi.org/10.4314/ejhs.v30i5.4

Aemro, A., Workneh, B. S., Mekonen, E. G., Wassie, M., & Chekol, B. (2022). Prevalence of anaemia and its associated factors among HIV-infected adults at the time of ART initiation at Debre Markos Comprehensive Specialized Hospital, Northwest Ethiopia: A retrospective cross-sectional study. BMJ Open, 12(6), e057235. https://doi.org/10.1136/bmjopen-2021-057235 DOI: https://doi.org/10.1136/bmjopen-2021-057235

Akase, I. E., Obiako, R. O., Musa, B. O. P., Opawoye, A., & Akanmu, A. S. (2019). Levels of interleukin 6 and 10 and their relationship to hematological changes in HIV treatment-naïve and treatment-experienced patients. Sub-Saharan African Journal of Medicine, 6(2), 90. https://doi.org/10.4103/ssajm.ssajm_8_19 DOI: https://doi.org/10.4103/ssajm.ssajm_8_19

Amadei, M., Polticelli, F., Musci, G., & Bonaccorsi di Patti, M. C. (2025). The ferroxidase-permease system for transport of iron across membranes: From yeast to humans. International Journal of Molecular Sciences, 26(3), Article 3. https://doi.org/10.3390/ijms26030875 DOI: https://doi.org/10.3390/ijms26030875

Babar, S., & Saboor, M. (2024). Erythroferrone in focus: Emerging perspectives in iron metabolism and hematopathologies. Blood Science, 6(4), e00198. https://doi.org/10.1097/BS9.0000000000000198 DOI: https://doi.org/10.1097/BS9.0000000000000198

Camaschella, C., Nai, A., & Silvestri, L. (2020a). Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica, 105(2), Article 2. https://doi.org/10.3324/haematol.2019.232124

Camaschella, C., Nai, A., & Silvestri, L. (2020b). Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica, 105(2), 260-272. https://doi.org/10.3324/haematol.2019.232124 DOI: https://doi.org/10.3324/haematol.2019.232124

CDC. (2019). Global HIV & TB-Kenya country profile. https://www.cdc.gov/globalhivtb/where-we-work/kenya/kenya.html

Chambers, K., Ashraf, M. A., & Sharma, S. (2025). Physiology, hepcidin. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK538257/

Charan, J., & Biswas, T. (2013). How to calculate sample size for different study designs in medical research? Indian Journal of Psychological Medicine, 35(2), 121-126. https://doi.org/10.4103/0253-7176.116232 DOI: https://doi.org/10.4103/0253-7176.116232

Chen, H., Su, T., Attieh, Z. K., Fox, T. C., McKie, A. T., Anderson, G. J., & Vulpe, C. D. (2003). Systemic regulation of hephaestin and Ireg1 revealed in studies of genetic and nutritional iron deficiency. Blood, 102(5), 1893-1899. https://doi.org/10.1182/blood-2003-02-0347 DOI: https://doi.org/10.1182/blood-2003-02-0347

Coffey, R., & Ganz, T. (2018). Erythroferrone: An erythroid regulator of hepcidin and iron metabolism. HemaSphere, 2(2), e35. https://doi.org/10.1097/HS9.0000000000000035 DOI: https://doi.org/10.1097/HS9.0000000000000035

De las Cuevas, C., & Peñate, W. (2015). Psychometric properties of the eight-item Morisky Medication Adherence Scale (MMAS-8) in a psychiatric outpatient setting. International Journal of Clinical and Health Psychology, 15(2), 121-129. https://doi.org/10.1016/j.ijchp.2014.11.003 DOI: https://doi.org/10.1016/j.ijchp.2014.11.003

Doguer, C., Ha, J.-H., & Collins, J. F. (2018). Intersection of iron and copper metabolism in the mammalian intestine and liver. Comprehensive Physiology, 8(4), 1433-1461. https://doi.org/10.1002/j.2040-4603.2018.tb00047.x DOI: https://doi.org/10.1002/j.2040-4603.2018.tb00047.x

Domingos, I. F., Pereira-Martins, D. A., Sobreira, M. J. V. C., Oliveira, R. T. D., Alagbe, A. E., Lanaro, C., Albuquerque, D. M., Blotta, M. H. S. L., Araujo, A. S., Costa, F. F., Lucena-Araujo, A. R., Sonati, M. F., Bezerra, M. A. C., & Santos, M. N. N. (2020). High levels of proinflammatory cytokines IL-6 and IL-8 are associated with a poor clinical outcome in sickle cell anemia. Annals of Hematology, 99(5), 947-953. https://doi.org/10.1007/s00277-020-03978-8 DOI: https://doi.org/10.1007/s00277-020-03978-8

Kamvuma, K., Hamooya, B. M., Munsaka, S., Masenga, S. K., & Kirabo, A. (2024). Mechanisms and cardiorenal complications of chronic anemia in people with HIV. Viruses, 16(4), Article 4. https://doi.org/10.3390/v16040542 DOI: https://doi.org/10.3390/v16040542

Kesharwani, P., Dash, D., & Koiri, R. K. (2025). Deciphering the role of hepcidin in iron metabolism and anemia management. Journal of Trace Elements in Medicine and Biology, 87, 127591. https://doi.org/10.1016/j.jtemb.2025.127591 DOI: https://doi.org/10.1016/j.jtemb.2025.127591

Masini, G., Graham, F. J., Pellicori, P., Cleland, J. G. F., Cuthbert, J. J., Kazmi, S., Inciardi, R. M., & Clark, A. L. (2022). Criteria for iron deficiency in patients with heart failure. Journal of the American College of Cardiology, 79(4), 341-351. https://doi.org/10.1016/j.jacc.2021.11.039 DOI: https://doi.org/10.1016/j.jacc.2021.11.039

Motulsky, H. (2019). GraphPad Prism (Version 8.0.2) [Computer software]. GraphPad Software. https://www.graphpad.com/

Mwangi, M. N., Mzembe, G., Moya, E., & Verhoef, H. (2021). Iron deficiency anemia in sub-Saharan Africa: A review of current evidence and primary care recommendations for high-risk groups. The Lancet Haematology, 8(10), e732-e743. https://doi.org/10.1016/S2352-3026(21)00193-9 DOI: https://doi.org/10.1016/S2352-3026(21)00193-9

NIH. (2020). Treatment-naive definition. AIDSinfo. https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/874/treatment-naive

NIH. (2024). Protecting human research participants. https://phrptraining.com/

Obeagu, E. I., Obeagu, G. U., Ukibe, N. R., & Oyebadejo, S. A. (2024). Anemia, iron, and HIV: Decoding the interconnected pathways: A review. Medicine, 103(2), e36937. https://doi.org/10.1097/MD.0000000000036937 DOI: https://doi.org/10.1097/MD.0000000000036937

Omuse, G., Chege, A., Kawalya, D. E., Kagotho, E., & Maina, D. (2022a). Ferritin and its association with anemia in a healthy adult population in Kenya. PLOS ONE, 17(10), e0275098. https://doi.org/10.1371/journal.pone.0275098

Omuse, G., Chege, A., Kawalya, D. E., Kagotho, E., & Maina, D. (2022b). Ferritin and its association with anemia in a healthy adult population in Kenya. PLOS ONE, 17(10), e0275098. https://doi.org/10.1371/journal.pone.0275098 DOI: https://doi.org/10.1371/journal.pone.0275098

Omuse, G., Ichihara, K., Maina, D., Hoffman, M., Kagotho, E., Kanyua, A., Mwangi, J., Wambua, C., Amayo, A., Ojwang, P., Premji, Z., & Erasmus, R. (2020). Determination of reference intervals for common chemistry and immunoassay tests for Kenyan adults based on an internationally harmonized protocol and up-to-date statistical methods. PLOS ONE, 15(7), e0235234. https://doi.org/10.1371/journal.pone.0235234 DOI: https://doi.org/10.1371/journal.pone.0235234

Rohr, M., Brandenburg, V., & Brunner-La Rocca, H.-P. (2023). How to diagnose iron deficiency in chronic disease: A review of current methods and potential markers for the outcome. European Journal of Medical Research, 28(1), 15. https://doi.org/10.1186/s40001-022-00922-6 DOI: https://doi.org/10.1186/s40001-022-00922-6

Ru, Q., Li, Y., Chen, L., Wu, Y., Min, J., & Wang, F. (2024a). Iron homeostasis and ferroptosis in human diseases: Mechanisms and therapeutic prospects. Signal Transduction and Targeted Therapy, 9, 271. https://doi.org/10.1038/s41392-024-01969-z

Ru, Q., Li, Y., Chen, L., Wu, Y., Min, J., & Wang, F. (2024b). Iron homeostasis and ferroptosis in human diseases: Mechanisms and therapeutic prospects. Signal Transduction and Targeted Therapy, 9(1), 271. DOI: https://doi.org/10.1038/s41392-024-01969-z

https://doi.org/10.1038/s41392-024-01969-z

Sah, S. K., Dahal, P., Tamang, G. B., Mandal, D. K., Shah, R., & Pun, S. B. (2020). Prevalence and predictors of anemia in HIV-infected persons in Nepal. HIV/AIDS - Research and Palliative Care, 12, 193-200. https://doi.org/10.2147/HIV.S244618 DOI: https://doi.org/10.2147/HIV.S244618

Sangkhae, V., Yu, V., Coffey, R., Ganz, T., & Nemeth, E. (2021). Erythroferrone modulates iron distribution for fetal erythropoiesis. Blood, 138, 757. https://doi.org/10.1182/blood-2021-153902 DOI: https://doi.org/10.1182/blood-2021-153902

Shen, Y., Wang, Z., Lu, H., Wang, J., Chen, J., Liu, L., Zhang, R., & Zheng, Y. (2013). Prevalence of anemia among adults with newly diagnosed HIV/AIDS in China. PLOS ONE, 8(9), e73807. https://doi.org/10.1371/journal.pone.0073807 DOI: https://doi.org/10.1371/journal.pone.0073807

Valo, E., Colombo, M., Sandholm, N., McGurnaghan, S. J., Blackbourn, L. A. K., Dunger, D. B., McKeigue, P. M., Forsblom, C., Groop, P.-H., Colhoun, H. M., Turner, C., & Dalton, R. N. (2022). Effect of serum sample storage temperature on metabolomic and proteomic biomarkers. Scientific Reports, 12(1), 4571. https://doi.org/10.1038/s41598-022-08429-0 DOI: https://doi.org/10.1038/s41598-022-08429-0

WHO. (2010). Guidelines on drawing blood: Best practices in phlebotomy. World Health Organization. http://www.ncbi.nlm.nih.gov/books/NBK138650/

WHO. (2019). Haemoglobin concentrations for the diagnosis of anemia and assessment of severity. World Health Organization. http://www.who.int/vmnis/indicators/haemoglobin/en/

WHO. (2024). Guidelines approved by the guidelines review committee. World Health Organization.

Published

2025-09-01

How to Cite

Abonyo, C., Kiboi, N., & Shaviya, N. (2025). Tracking biomarkers of iron dysregulation across HIV treatment spectrum: Insights from erythroferrone, hepcidin and hephaestin levels in Western Kenya. SCIENCE MUNDI, 5(2), 85–94. https://doi.org/10.51867/scimundi.5.2.8