The Role of Pseudomonas aeruginosa in Surgical Site Infections in Sub-Saharan Africa
DOI:
https://doi.org/10.51867/scimundi.5.1.2Keywords:
Pseudomonas aeruginosa, Predominance, Surgical Site Infections, Sub-Saharan AfricaAbstract
Surgical Site Infections remain a significant burden in healthcare settings, contributing to prolonged hospital stays, increased healthcare costs, and increased morbidity and mortality rates. Among the various pathogens implicated in these infections, Pseudomonas aeruginosa remains a particularly formidable bacterium due to its intrinsic resistance to many antibiotics and its ability to acquire additional resistance mechanisms. Despite this incidence, there is a geographical limitation of surveillance programs on this pathogen continues to cripple infection control and prevention in sub-Saharan Africa, crippling surveillance data on the infection management. We aimed at understanding the role of Pseudomonas aeruginosa (PA) on the seemingly growing and concerning infections of surgical site in sub-Saharan Africa (SSA). This study adopted systematic review and meta-analysis design in line with PRISMA guidelines. For data collection, therefore, we systematically searched PubMed and other relevant databases for articles (2015-2023) relevant to antimicrobial resistance (AMR) and predominance of Pseudomonas aeruginosa (PA) in sub-Saharan Africa (SSA). We examined 26 relevant articles out of 225 that matched the initial search. A standardized data extraction form was developed to capture relevant information from the selected studies. Data collected from the studies included were synthesized narratively and reported through Systematic Reviews and Meta Analyses (PRISMA). Through an in-depth analysis of the relevant literature, the low number of studies in the region focused on PA and AMR. Nevertheless, the relatively few studies demonstrate the high rates of PA involvement in surgical site infections. The studies further show high levels of multi-drug resistance and points to subsequent nosocomial clinical outcomes. In conclusion, the study underscores the burden posed by PA in SSA, highlighting on the prevalence, multi-drug resistance and virulence. Clearly, its surveillance remains geographically limited especially in the regions that are underrepresented. The study recommends that infections prevention and control programs (IPCs) be strengthened, that antimicrobial stewardship be sensitised to regulate antibiotic use, and that surveillance and research on PA be expanded in SSA.
Downloads
References
Abdi, F. A., Motumma, A. N., Kalayu, A. A., & Abegaz, W. E. (2024). Prevalence and antimicrobial-resistant patterns of Pseudomonas aeruginosa among burn patients attending Yekatit 12 Hospital Medical College in Addis Ababa, Ethiopia. PLOS ONE, 19(3), e0289586. https://doi.org/10.1371/journal.pone.0289586 DOI: https://doi.org/10.1371/journal.pone.0289586
Abourrich, M., Mourabit, N., Boussaa, S., Ghalit, M., Elbarghmi, R., Guerrouj, N., Aich, F., Khermach, A., & El Ouarghi, H. (2023). Antibiotic resistance patterns in nosocomial infections: Preliminary data from Hospital of Al-Hoceima, Morocco. Journal of Infection in Developing Countries, 17(9), 1310-1316. https://doi.org/10.3855/jidc.17454 DOI: https://doi.org/10.3855/jidc.17454
Ahmed, E. F., Rasmi, A. H., Abdullah, M., & Mahmoud, F. (2023). Prevalence and resistance profile of bacteria isolated from wound infections among a group of patients in Upper Egypt: A descriptive cross-sectional study. BMC Research Notes, 16(1). https://doi.org/10.1186/s13104-023-06379-y DOI: https://doi.org/10.1186/s13104-023-06379-y
Al-Orphaly, M., Hadi, H. A., Eltayeb, F. K., Al-Hail, H., Samuel, B. G., Sultan, A. A., & Skariah, S. (2021). Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. MSphere, 6(3). https://doi.org/10.1128/msphere.00202-21 DOI: https://doi.org/10.1128/mSphere.00202-21
Asamenew, T., Worku, S., Motbainor, H., Mekonnen, D., & Deribe, A. (2023). Antimicrobial Resistance Profile of Pseudomonas aeruginosa from Different Clinical Samples in Debre Tabor Comprehensive Specialized Hospital, Northwest Ethiopia. Ethiopian journal of health sciences, 33(3), 423-432. https://doi.org/10.4314/ejhs.v33i3.5 DOI: https://doi.org/10.4314/ejhs.v33i3.5
Asker, D., Awad, T. S., Raju, D., Sanchez, H., Lacdao, I., Gilbert, S., Sivarajah, P., Andes, D. R., Sheppard, D. C., Howell, P. L., & Hatton, B. D. (2021). Preventing Pseudomonas aeruginosa Biofilms on Indwelling Catheters by Surface-Bound Enzymes. ACS Applied Bio Materials, 4(12), 8248-8258. https://doi.org/10.1021/acsabm.1c00794 DOI: https://doi.org/10.1021/acsabm.1c00794
Ayukekbong, J. A., Ntemgwa, M., & Atabe, A. N. (2017). The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrobial Resistance & Infection Control, 6(1). https://doi.org/10.1186/s13756-017-0208-x DOI: https://doi.org/10.1186/s13756-017-0208-x
Baseel, D., Kim, J., Mohammed, S., Lowe, A., & Siddiqi, J. (2022). The Ideal Time to Administer Pre-operative Antibiotics: Current and Future Practices. Cureus, 14(5), e24979. https://doi.org/10.7759/cureus.24979 DOI: https://doi.org/10.7759/cureus.24979
Bediako-Bowan, A. A. A., Kurtzhals, J. A. L., Mølbak, K., Labi, A.-K., Owusu, E., & Newman, M. J. (2020). High rates of multi-drug resistant gram-negative organisms associated with surgical site infections in a teaching hospital in Ghana. BMC Infectious Diseases, 20(1). https://doi.org/10.1186/s12879-020-05631-1 DOI: https://doi.org/10.1186/s12879-020-05631-1
Berhe, D. F., Beyene, G. T., Seyoum, B., Gebre, M., Haile, K., Tsegaye, M., Boltena, M. T., Tesema, E., Kibret, T. C., Biru, M., Siraj, D. S., Shirley, D., Howe, R., & Abdissa, A. (2021). Prevalence of antimicrobial resistance and its clinical implications in Ethiopia: a systematic review. Antimicrobial Resistance & Infection Control, 10(1). https://doi.org/10.1186/s13756-021-00965-0 DOI: https://doi.org/10.1186/s13756-021-00965-0
Bobbo, K. A., Ahmad, U., Chau, D.-M., Nordin, N., & Abdullah, S. (2023). A comprehensive review of cystic fibrosis in Africa and Asia. Saudi Journal of Biological Sciences, 30(7), 103685. https://doi.org/10.1016/j.sjbs.2023.103685 DOI: https://doi.org/10.1016/j.sjbs.2023.103685
Brown, D., Vashisht, R., & Caballero Alvarado, J. A. (2021). Septic Peritonitis. PubMed; StatPearls Publishing. https://pubmed.ncbi.nlm.nih.gov/30252385/
Chilam, J., Argimón, S., Limas, M. T., Masim, M. L., Gayeta, J. M., Lagrada, M. L., Olorosa, A. M., Cohen, V., Hernandez, L. T., Jeffrey, B., Abudahab, K., Hufano, C. M., Sia, S. B., Holden, M. T. G., Stelling, J., Aanensen, D. M., & Carlos, C. C. (2021). Genomic surveillance of Pseudomonas aeruginosa in the Philippines, 2013-2014. Western Pacific Surveillance and Response Journal: WPSAR, 12(2), 4-18. https://doi.org/10.5365/wpsar.2020.11.1.006 DOI: https://doi.org/10.5365/wpsar.2020.11.1.006
Chimi, L. Y., Noubom, M., Bisso, B. N., Sedar, G., & Dzoyem, J. P. (2024). Biofilm formation, pyocyanin production, and antibiotic resistance profile of Pseudomonas aeruginosa isolates from wounds. International Journal of Microbiology, 2024, 1-10. https://doi.org/10.1155/2024/1207536 DOI: https://doi.org/10.1155/2024/1207536
Choonara, F. E., Haldorsen, B. C., Ndhlovu, I., Saulosi, O., Maida, T., Lampiao, F., Simonsen, G. S., Essack, S. Y., & Sundsfjord, A. (2022). Antimicrobial susceptibility profiles of clinically important bacterial pathogens at the Kamuzu Central Hospital in Lilongwe, Malawi. Malawi Medical Journal, 34(1), 9-16. https://doi.org/10.4314/mmj.v34i1.3 DOI: https://doi.org/10.4314/mmj.v34i1.3
Coleman, S. R., Blimkie, T., Falsafi, R., & Hancock, R. E. W. (2020). Multidrug Adaptive Resistance of Pseudomonas aeruginosa Swarming Cells. Antimicrobial Agents and Chemotherapy, 64(3). https://doi.org/10.1128/aac.01999-19 DOI: https://doi.org/10.1128/AAC.01999-19
Dégbey, C., Kpozehouen, A., Coulibaly, D., Chigblo, P., Avakoudjo, J., Ouendo, E.-M., & Hans-Moevi, A. (2021). Prevalence and Factors Associated With Surgical Site Infections in the University Clinics of Traumatology and Urology of the National University Hospital Centre Hubert Koutoukou Maga in Cotonou. Frontiers in Public Health, 9. https://doi.org/10.3389/fpubh.2021.629351 DOI: https://doi.org/10.3389/fpubh.2021.629351
Dlungele, A. P., & Mathibe, L. J. (2023). Implementation of antimicrobial stewardship programmes in private healthcare settings in Africa: A scoping review. Health SA Gesondheid, 28. https://doi.org/10.4102/hsag.v28i0.2104 DOI: https://doi.org/10.4102/hsag.v28i0.2104
Elton, L., Thomason, M. J., Tembo, J., Velavan, T. P., Pallerla, S. R., Arruda, L. B., Vairo, F., Montaldo, C., Ntoumi, F., Abdel Hamid, M. M., Haider, N., Kock, R., Ippolito, G., Zumla, A., McHugh, T. D., & the PANDORA-ID-NET consortium (2020). Antimicrobial resistance preparedness in sub-Saharan African countries. Antimicrobial resistance and infection control, 9(1), 145. https://doi.org/10.1186/s13756-020-00800-y DOI: https://doi.org/10.1186/s13756-020-00800-y
Engler, D., Meyer, J. C., Schellack, N., Kurdi, A., & Godman, B. (2021). Antimicrobial Stewardship Activities in Public Healthcare Facilities in South Africa: A Baseline for Future Direction. Antibiotics, 10(8), 996. https://doi.org/10.3390/antibiotics10080996 DOI: https://doi.org/10.3390/antibiotics10080996
Fernández-Billón, M., Llambías-Cabot, A. E., Jordana-Lluch, E., Oliver, A., & Macià, M. D. (2023). Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm, 5, 100129. https://doi.org/10.1016/j.bioflm.2023.100129 DOI: https://doi.org/10.1016/j.bioflm.2023.100129
Forrester, J. A., Starr, N., Negussie, T., Schaps, D., Adem, M., Alemu, S., Amenu, D., Gebeyehu, N., Habteyohannes, T., Jiru, F., Tesfaye, A., Wayessa, E., Chen, R., Trickey, A., Bitew, S., Bekele, A., & Weiser, T. G. (2020). Clean Cut (adaptive, multimodal surgical infection prevention programme) for low-resource settings: a prospective quality improvement study. The British Journal of Surgery. https://doi.org/10.1002/bjs.11997 DOI: https://doi.org/10.1002/bjs.11997
Graf, K., Ott, E., Vonberg, R.-P., Kuehn, C., Schilling, T., Haverich, A., & Chaberny, I. F. (2011). Surgical site infections-economic consequences for the health care system. Langenbeck's Archives of Surgery, 396(4), 453-459. https://doi.org/10.1007/s00423-011-0772-0 DOI: https://doi.org/10.1007/s00423-011-0772-0
Hassan, R. S. E. E., Osman, S. O. S., Aabdeen, M. A. S., Mohamed, W. E. A., Hassan, R. S. E. E., & Mohamed, S. O. O. (2020). Incidence and root causes of surgical site infections after gastrointestinal surgery at a public teaching hospital in Sudan. Patient Safety in Surgery, 14(1). https://doi.org/10.1186/s13037-020-00272-4 DOI: https://doi.org/10.1186/s13037-020-00272-4
Hirani, S., Trivedi, N. A., Chauhan, J., & Chauhan, Y. (2022). A study of clinical and economic burden of surgical site infection in patients undergoing caesarian section at a tertiary care teaching hospital in India. PLOS ONE, 17(6), e0269530. https://doi.org/10.1371/journal.pone.0269530 DOI: https://doi.org/10.1371/journal.pone.0269530
Hou, Y., Collinsworth, A., Flutura Hasa, & Griffin, L. (2022). Incidence and impact of surgical site infections on length of stay and cost of care for patients undergoing open procedures. 11, 1-18. https://doi.org/10.1016/j.sopen.2022.10.004 DOI: https://doi.org/10.1016/j.sopen.2022.10.004
Hussain, M. A., Mohamed, M. S., Altayb, H. N., Mohamed, A. O., Ashour, A., Osman, W., Sherif, A. E., Ghazawi, K. F., Miski, S. F., Ibrahim, S. R. M., Mohamed, G. A., Sindi, I. A., Alshamrani, A. A., & Elgaml, A. (2023). Comparative Genomic Analysis of Multi-Drug Resistant Pseudomonas aeruginosa Sequence Type 235 Isolated from Sudan. Microorganisms, 11(6), 1432. https://doi.org/10.3390/microorganisms11061432 DOI: https://doi.org/10.3390/microorganisms11061432
Iliyasu, G., Abdu, A., Dayyab, F. M., Tiamiyu, A. B., Habib, Z. G., Adamu, B., & Habib, A. G. (2016). Post-renal transplant infections: single-center experience from Nigeria. Transplant Infectious Disease, 18(4), 566-574. https://doi.org/10.1111/tid.12548 DOI: https://doi.org/10.1111/tid.12548
Iskandar, K., Molinier, L., Hallit, S., Sartelli, M., Hardcastle, T. C., Haque, M., Lugova, H., Dhingra, S., Sharma, P., Islam, S., Mohammed, I., Naina Mohamed, I., Hanna, P. A., Hajj, S. E., Jamaluddin, N. A. H., Salameh, P., & Roques, C. (2021). Surveillance of antimicrobial resistance in low- and middle-income countries: a scattered picture. Antimicrobial Resistance & Infection Control, 10(1). https://doi.org/10.1186/s13756-021-00931-w DOI: https://doi.org/10.1186/s13756-021-00931-w
Jurado-Martín, I., Sainz-Mejías, M., & McClean, S. (2021). Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. International Journal of Molecular Sciences, 22(6). https://doi.org/10.3390/ijms22063128 DOI: https://doi.org/10.3390/ijms22063128
Kakupa, D. K., Muenze, P. K., Byl, B., & Dramaix, M. (2016). Etude de la prévalence des infections nosocomiales et des facteurs associes dans les deux hopitaux universitaires de Lubumbashi, République Démocratique du Congo: cas des Cliniques Universitaires de Lubumbashi et l'Hôpital Janson Sendwe. Pan African Medical Journal, 24. https://doi.org/10.11604/pamj.2016.24.275.7626 DOI: https://doi.org/10.11604/pamj.2016.24.275.7626
Kariuki, S., Kering, K., Wairimu, C., Onsare, R., & Mbae, C. (2022). Antimicrobial Resistance Rates and Surveillance in Sub-Saharan Africa: Where Are We Now? Infection and Drug Resistance, 15, 3589-3609. https://doi.org/10.2147/IDR.S342753 DOI: https://doi.org/10.2147/IDR.S342753
Khan, F. U., Fang, Y., Khan, Z., Khan, F. U., Malik, Z. I., Ahmed, N., Khan, A. H., & Rehman, Asim. ur. (2020). Occurrence, associated risk factors, and treatment of surgical site infections in Pakistan. European Journal of Inflammation, 18, 205873922096054. https://doi.org/10.1177/2058739220960547 DOI: https://doi.org/10.1177/2058739220960547
Kiyaga, S., Kyany'a, C., Muraya, A. W., Smith, H. J., Mills, E. G., Kibet, C., Mboowa, G., & Musila, L. (2022). Genetic Diversity, Distribution, and Genomic Characterization of Antibiotic Resistance and Virulence of Clinical Pseudomonas aeruginosa Strains in Kenya. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.835403 DOI: https://doi.org/10.3389/fmicb.2022.835403
Lakoh, S., Yi, L., Sevalie, S., Guo, X., Adekanmbi, O., Smalle, I. O., Williams, N., Barrie, U., Koroma, C., Zhao, Y., Kamara, M. N., Cummings-John, C., Jiba, D. F., Namanaga, E. S., Deen, B., Zhang, J., Maruta, A., Kallon, C., Liu, P., & Wurie, H. R. (2022). Incidence and risk factors of surgical site infections and related antibiotic resistance in Freetown, Sierra Leone: a prospective cohort study. Antimicrobial Resistance & Infection Control, 11(1). https://doi.org/10.1186/s13756-022-01078-y DOI: https://doi.org/10.1186/s13756-022-01078-y
Lee, J., & Zhang, L. (2014). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & Cell, 6(1), 26-41. https://doi.org/10.1007/s13238-014-0100-x DOI: https://doi.org/10.1007/s13238-014-0100-x
Leekha, S., Terrell, C. L., & Edson, R. S. (2011). General Principles of Antimicrobial Therapy. Mayo Clinic Proceedings, 86(2), 156-167. https://doi.org/10.4065/mcp.2010.0639 DOI: https://doi.org/10.4065/mcp.2010.0639
Liao, C., Huang, X., Wang, Q., Yao, D., & Lu, W. (2022). Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Frontiers in Cellular and Infection Microbiology, 12(926758). https://doi.org/10.3389/fcimb.2022.926758 DOI: https://doi.org/10.3389/fcimb.2022.926758
Lister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, 22(4), 582-610. https://doi.org/10.1128/CMR.00040-09 DOI: https://doi.org/10.1128/CMR.00040-09
Liu, Y.-F., Ni, P.-W., Huang, Y., & Xie, T. (2022). Therapeutic Strategies for Chronic Wound Infection. Chinese Journal of Traumatology, 25(1), 11-16. https://doi.org/10.1016/j.cjtee.2021.07.004 DOI: https://doi.org/10.1016/j.cjtee.2021.07.004
Llor, C., & Bjerrum, L. (2014). Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Therapeutic Advances in Drug Safety, 5(6), 229-241. https://doi.org/10.1177/2042098614554919 DOI: https://doi.org/10.1177/2042098614554919
Lorusso, A. B., Carrara, J. A., Barroso, C. D. N., Tuon, F. F., & Faoro, H. (2022). Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 23(24), 15779. https://doi.org/10.3390/ijms232415779 DOI: https://doi.org/10.3390/ijms232415779
Lowe, H., Woodd, S., Lange, I. L., Janjanin, S., Barnett, J., & Graham, W. (2021). Challenges and opportunities for infection prevention and control in hospitals in conflict-affected settings: a qualitative study. Conflict and Health, 15(1). https://doi.org/10.1186/s13031-021-00428-8 DOI: https://doi.org/10.1186/s13031-021-00428-8
Lubega, A., Joel, B., & Justina Lucy, N. (2017). Incidence and Etiology of Surgical Site Infections among Emergency Postoperative Patients in Mbarara Regional Referral Hospital, South Western Uganda. Surgery Research and Practice, 2017, 1-6. https://doi.org/10.1155/2017/6365172 DOI: https://doi.org/10.1155/2017/6365172
Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens, 10(10), 1310. https://doi.org/10.3390/pathogens10101310 DOI: https://doi.org/10.3390/pathogens10101310
Maraş, G., & Sürme, Y. (2023). Surgical site infections: Prevalence, economic burden, and new preventive recommendations. Exploratory Research and Hypothesis in Medicine, 8(4), 366–371. https://doi.org/10.14218/ERHM.2023.00010 DOI: https://doi.org/10.14218/ERHM.2023.00010
Mehtar, S., Wanyoro, A., Ogunsola, F., Ameh, E. A., Nthumba, P., Kilpatrick, C., Revathi, G., Antoniadou, A., Giamarelou, H., Apisarnthanarak, A., Ramatowski, J. W., Rosenthal, V. D., Storr, J., Osman, T. S., & Solomkin, J. S. (2020). Implementation of surgical site infection surveillance in low- and middle-income countries: A position statement for the International Society for Infectious Diseases. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases, 100, 123-131. https://doi.org/10.1016/j.ijid.2020.07.021 DOI: https://doi.org/10.1016/j.ijid.2020.07.021
Mekonnen, H., Seid, A., Molla Fenta, G., & Gebrecherkos, T. (2021). Antimicrobial resistance profiles and associated factors of Acinetobacter and Pseudomonas aeruginosa nosocomial infection among patients admitted at Dessie comprehensive specialized Hospital, North-East Ethiopia. A cross-sectional study. PLOS ONE, 16(11), e0257272. https://doi.org/10.1371/journal.pone.0257272 DOI: https://doi.org/10.1371/journal.pone.0257272
Mezemir, R., Seid, A., Gishu, T., Demas, T., & Gize, A. (2020). Prevalence and root causes of surgical site infections at an academic trauma and burn center in Ethiopia: a cross-sectional study. Patient safety in surgery, 14, 3. https://doi.org/10.1186/s13037-019-0229-x DOI: https://doi.org/10.1186/s13037-019-0229-x
Misha, G., Chelkeba, L., & Melaku, T. (2021). Incidence, risk factors and outcomes of surgical site infections among patients admitted to Jimma Medical Center, South West Ethiopia: Prospective cohort study. Annals of Medicine and Surgery, 65, 102247. https://doi.org/10.1016/j.amsu.2021.102247 DOI: https://doi.org/10.1016/j.amsu.2021.102247
Mmari, E. E., Pallangyo, E. S., Ali, A., Kaale, D. A., Mawalla, I. H., & Abeid, M. S. (2021). Perceptions of surgeons on surgical antibiotic prophylaxis use at an urban tertiary hospital in Tanzania. PLoS ONE, 16(8), e0256134. https://doi.org/10.1371/journal.pone.0256134 DOI: https://doi.org/10.1371/journal.pone.0256134
Moremi, N., Claus, H., Vogel, U., & Mshana, S. E. (2017). Surveillance of surgical site infections by Pseudomonas aeruginosa and strain characterization in Tanzanian hospitals does not provide proof for a role of hospital water plumbing systems in transmission. Antimicrobial resistance and infection control, 6, 56. https://doi.org/10.1186/s13756-017-0216-x DOI: https://doi.org/10.1186/s13756-017-0216-x
Moyo, P., Moyo, E., Mangoya, D., Mhango, M., Mashe, T., Imran, M., & Dzinamarira, T. (2023). Prevention of antimicrobial resistance in sub-Saharan Africa: What has worked? What still needs to be done? Journal of Infection and Public Health, 16(4). https://doi.org/10.1016/j.jiph.2023.02.020 DOI: https://doi.org/10.1016/j.jiph.2023.02.020
Nejad, S. B., Allegranzi, B., Syed, S., Ellis, B., & Pittet, D. (2011). Health-care-associated infection in Africa: a systematic review. Bulletin of the World Health Organization, 89(10), 757-765. https://doi.org/10.2471/blt.11.088179 DOI: https://doi.org/10.2471/BLT.11.088179
Ntirenganya, C., Muvunyi, C. M., Manzi, O., & Ogbuagu, O. (2015). High Prevalence of Antimicrobial Resistance among Common Bacterial Isolates in a Tertiary Healthcare Facility in Rwanda. The American Journal of Tropical Medicine and Hygiene, 92(4), 865-870. https://doi.org/10.4269/ajtmh.14-0607 DOI: https://doi.org/10.4269/ajtmh.14-0607
Omoyibo, E., Oladele, A., Ibrahim, M., & Adekunle, O. (2018). Antibiotic susceptibility of wound swab isolates in a tertiary hospital in Southwest Nigeria. Annals of African Medicine, 17(3), 110. https://doi.org/10.4103/aam.aam_22_17 DOI: https://doi.org/10.4103/aam.aam_22_17
Pachori, P., Gothalwal, R., & Gandhi, P. (2019). Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes & Diseases, 6(2), 109-119. https://doi.org/10.1016/j.gendis.2019.04.001 DOI: https://doi.org/10.1016/j.gendis.2019.04.001
Pang, Z., Raudonis, R., Glick, B. R., Lin, T.-J., & Cheng, Z. (2019). Antibiotic Resistance in Pseudomonas aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnology Advances, 37(1), 177-192. https://doi.org/10.1016/j.biotechadv.2018.11.013 DOI: https://doi.org/10.1016/j.biotechadv.2018.11.013
Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, Virulence factors, Antibiotic resistance, Interaction with host, Technology Advances and Emerging Therapeutics. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01056-1 DOI: https://doi.org/10.1038/s41392-022-01056-1
Rickard, J., Beilman, G., Forrester, J., Sawyer, R., Stephen, A., Weiser, T. G., & Valenzuela, J. (2020). Surgical Infections in Low- and Middle-Income Countries: A Global Assessment of the Burden and Management Needs. Surgical Infections, 21(6), 478-494. https://doi.org/10.1089/sur.2019.142 DOI: https://doi.org/10.1089/sur.2019.142
Saleem, Z., Hassali, M. A., Hashmi, F. K., Godman, B., & Saleem, F. (2019). Antimicrobial dispensing practices and determinants of antimicrobial resistance: a qualitative study among community pharmacists in Pakistan. Family Medicine and Community Health, 7(3), e000138. https://doi.org/10.1136/fmch-2019-000138 DOI: https://doi.org/10.1136/fmch-2019-000138
Seward, N., Hanlon, C., Abdella, A., Abrahams, Z., Alem, A., Araya, R., Bachmann, M., Bekele, A., Bogale, B., Brima, N., Chibanda, D., Curran, R., Davies, J., Beyene, A., Fairall, L., Farrant, L., Frissa, S., Gallagher, J., Gao, W., & Gwyther, L. (2022). HeAlth System StrEngThening in four sub-Saharan African countries (ASSET) to achieve high-quality, evidence-informed surgical, maternal and newborn, and primary care: protocol for pre-implementation phase studies. Global Health Action, 15(1). https://doi.org/10.1080/16549716.2021.1987044 DOI: https://doi.org/10.1080/16549716.2021.1987044
Shallcross, L. J., & Davies, D. S. C. (2014). Antibiotic overuse: a key driver of antimicrobial resistance. British Journal of General Practice, 64(629), 604-605. https://doi.org/10.3399/bjgp14x682561 DOI: https://doi.org/10.3399/bjgp14X682561
Shears, P. (2007). Poverty and infection in the developing world: Healthcare-related infections and infection control in the tropics. Journal of Hospital Infection, 67(3), 217-224. https://doi.org/10.1016/j.jhin.2007.08.016 DOI: https://doi.org/10.1016/j.jhin.2007.08.016
Tadesse, B. T., Ashley, E. A., Ongarello, S., Havumaki, J., Wijegoonewardena, M., González, I. J., & Dittrich, S. (2017). Antimicrobial resistance in Africa: a systematic review. BMC Infectious Diseases, 17(1). https://doi.org/10.1186/s12879-017-2713-1 DOI: https://doi.org/10.1186/s12879-017-2713-1
Talaat, M., El-Shokry, M., El-Kholy, J., Ismail, G., Kotb, S., Hafez, S., Attia, E., & Lessa, F. C. (2016). National surveillance of health care-associated infections in Egypt: Developing a sustainable program in a resource-limited country. American Journal of Infection Control, 44(11), 1296-1301. https://doi.org/10.1016/j.ajic.2016.04.212 DOI: https://doi.org/10.1016/j.ajic.2016.04.212
Verhoeve, V. I., Brammer, J. A., Driscoll, T. P., Kambouris, A. R., Rasko, D. A., Cross, A. S., & Gillespie, J. J. (2022). Genome sequencing of Pseudomonas aeruginosa strain M2 illuminates traits of an opportunistic pathogen of burn wounds. G3, 12(5). https://doi.org/10.1093/g3journal/jkac073 DOI: https://doi.org/10.1093/g3journal/jkac073
Vieira, E., Joana, L., Santos, Cerqueira‐Santos, S., Rocha, S., Silva, S., & Pereira, D. (2022). Evaluation of pharmacist's practices regarding the antimicrobials dispensing: a simulated patient study. BMC Health Services Research, 22(1). https://doi.org/10.1186/s12913-022-08853-y DOI: https://doi.org/10.1186/s12913-022-08853-y
WHO. (2024, May 20). WHO updates Bacterial Priority Pathogens List to combat antimicrobial resistance. News-Medical. https://www.news-medical.net/news/20240520/WHO-updates-Bacterial-Priority-Pathogens-List-to-combat-antimicrobial-resistance.aspx
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sarah Karauki Kindiki, Peter Kuloba Nyongesa, Nyabera Nicholas Mogoi, Sabella Kiprono

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.