Achieving Stable Intercalation States upon Optimizing Intercalation Reactions Involving Kaolinite Inter-Layer Spaces

Authors

DOI:

https://doi.org/10.51867/scimundi.5.1.1

Keywords:

Intercalation, Kaolinite, Intercalant, Nano-composites, Nano-clay, Phyllosilicate

Abstract

This study explored the intercalation processes of kaolinite which is a layered phyllosilicate mineral with 1:1 structural configuration capable of incorporation of guest molecules within its interlayer spaces. The experiments utilize X-ray diffraction (XRD) techniques to examine the intercalation ratios of the intercalants (cationic intercalants namely ferrihydrite and hydroxyaluminum as well as anionic intercalant namely DMSO and Methanol) for the analysis of their respective hyperstabilization effects of kaolinite structural expansion. The investigations target a stable intercalation state or S.I.S, which is defined by the constant distance between the interlayers. Findings revealed that, the order of intercalation kinetics progresses through first (76.8% A.I.R, lattice expansion: 3.61–3.62 Å), second (87.4% A.I.R) and third order (89.2% A.I.R) reactions which results into a point called “Stable Intercalation State" which is characterized with constant apparent intercalation ratios (A.I.R). It was also found that kaolinite intercalation is influenced by aging time, temperature, and molecular size thereby impacting the apparent intercalation ratio before the S.I.S point is attained. The present work provides a detailed guideline on improving intercalation through the experimental parameters to pave the way towards understanding stable intercalation states in kaolinite-host structures. The obtained results allow deepening insight into the mechanistic intercalation chemistry of kaolinite with possible end use in controlled release systems.

Downloads

Download data is not yet available.

References

Asuero, A. G., Sayago, A., & González, A. (2006). The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41-59. https://doi.org/10.1080/10408340500526766 DOI: https://doi.org/10.1080/10408340500526766

Bergaya, F., Aouad, A., & Mandalia, T. (2006). Pillared clays and clay minerals. Developments in Clay Science, 1, 393-421.

https://doi.org/10.1016/S1572-4352(05)01012-3 DOI: https://doi.org/10.1016/S1572-4352(05)01012-3

Bujdák, J. (2015). Effect of layer charge on the formation of polymer/layered silicate nanocomposites: Intercalation of polystyrene. The Journal of Physical Chemistry C, 119(21), 12016-12022. https://doi.org/10.1021/acs.jpcc.5b02610 DOI: https://doi.org/10.1021/acs.jpcc.5b02610

Carrado, K. A., Zajac, G. W., Song, K., & Brenner, J. R. (1997). Crystal growth of organohectorite clay as revealed by atomic force microscopy. Langmuir, 13(10), 2895-2902.

https://doi.org/10.1021/la961048m DOI: https://doi.org/10.1021/la961048m

Chen, H., Ma, H., & Li, C. (2021). Host-guest intercalation chemistry in MXenes and its implications for practical applications. ACS Nano, 15(10), 15502-15537.

https://doi.org/10.1021/acsnano.1c04423 DOI: https://doi.org/10.1021/acsnano.1c04423

Dol Hamid, R., Swedlund, P. J., Song, Y., & Miskelly, G. M. (2011). Ionic strength effects on silicic acid (H₄SiO₄) sorption and oligomerization on an iron oxide surface: An interesting interplay between electrostatic and chemical forces. Langmuir, 27(21), 12930-12937. https://doi.org/10.1021/la201775c DOI: https://doi.org/10.1021/la201775c

Guan, Y., & Zhong, Q. (2019). Stable aqueous foams created with intercalated montmorillonite nanoclay coated by sodium caseinate. Journal of Food Engineering, 248, 36-45.

https://doi.org/10.1016/j.jfoodeng.2018.12.011 DOI: https://doi.org/10.1016/j.jfoodeng.2018.12.011

Hayes, K., Papelis, C., & Leckie, J. (1988). Ionic strength effects on silicic acid (H₄SiO₄) sorption and oligomerization on an iron oxide surface: An interesting interplay between electrostatic and chemical forces. Journal of Colloid and Interface Science, 125(717), 90039-90032.

Hughes, J. C., Gilkes, R. J., & Hart, R. D. (2009). Intercalation of reference and soil kaolins in relation to physico-chemical and structural properties. Applied Clay Science, 45(1-2), 24-35.

https://doi.org/10.1016/j.clay.2009.04.006 DOI: https://doi.org/10.1016/j.clay.2009.04.006

Kabalnov, A. (2001). Ostwald ripening and related phenomena. Journal of Dispersion Science and Technology, 22(1), 1-12.

https://doi.org/10.1081/DIS-100102675 DOI: https://doi.org/10.1081/DIS-100102675

Kinoti, I. K., Karanja, E. M., Nthiga, E. W., M'thiruaine, C. M., & Marangu, J. M. (2022). Review of clay‐based nanocomposites as adsorbents for the removal of heavy metals. Journal of Chemistry, 2022(1), 7504626. https://doi.org/10.1155/2022/7504626 DOI: https://doi.org/10.1155/2022/7504626

Leal, P. V. B., Pereira, D. H., Papini, R. M., & Magriotis, Z. M. (2021). Effect of dimethyl sulfoxide intercalation into kaolinite on etheramine adsorption: Experimental and theoretical investigation. Journal of Environmental Chemical Engineering, 9(4), 105503. https://doi.org/10.1016/j.jece.2021.105503 DOI: https://doi.org/10.1016/j.jece.2021.105503

Lee, J. M., Kang, B., Jo, Y. K., & Hwang, S.-J. (2019). Organic intercalant-free liquid exfoliation route to layered metal-oxide nanosheets via the control of electrostatic interlayer interaction. ACS Applied Materials & Interfaces, 11(12), 12121-12132.

https://doi.org/10.1021/acsami.9b00566 DOI: https://doi.org/10.1021/acsami.9b00566

Maged, A., Ismael, I. S., Kharbish, S., Sarkar, B., Peräniemi, S., & Bhatnagar, A. (2020). Enhanced interlayer trapping of Pb(II) ions within kaolinite layers: Intercalation, characterization, and sorption studies. Environmental Science and Pollution Research, 27, 1870-1887. https://doi.org/10.1007/s11356-019-06845-w DOI: https://doi.org/10.1007/s11356-019-06845-w

Marzban, N., Moheb, A., Filonenko, S., Hosseini, S. H., Nouri, M. J., Libra, J. A., & Farru, G. (2021). Intelligent modeling and experimental study on methylene blue adsorption by sodium alginate-kaolin beads. International Journal of Biological Macromolecules, 186, 79-91. https://doi.org/10.1016/j.ijbiomac.2021.07.006 DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.006

Matusik, J., & Kłapyta, Z. (2013). Characterization of kaolinite intercalation compounds with benzylalkylammonium chlorides using XRD, TGA/DTA, and CHNS elemental analysis. Applied Clay Science, 83, 433-440. https://doi.org/10.1016/j.clay.2013.07.019 DOI: https://doi.org/10.1016/j.clay.2013.07.019

Mongey, K. (1996). The photophysical properties of Ruthenium (II) polypyridyl complexes immobilised in sol-gel matrices (Doctoral dissertation, Dublin City University).

Saha, K., Deka, J., Gogoi, R. K., Datta, K., & Raidongia, K. (2022). Applications of lamellar membranes reconstructed from clay mineral-based nanosheets: A review. ACS Applied Nano Materials, 5(11), 15972-15999. https://doi.org/10.1021/acsanm.1c03207 DOI: https://doi.org/10.1021/acsanm.1c03207

Sempeho, S. I., Kim, H. T., Mubofu, E., & Hilonga, A. (2014). Meticulous overview on the controlled release fertilizers. Advances in Chemistry, 2014(1), 363071. https://doi.org/10.1155/2014/363071 DOI: https://doi.org/10.1155/2014/363071

Sempeho, S. I., Kim, H. T., Mubofu, E., Pogrebnoi, A., Shao, G., & Hilonga, A. (2015). Dynamics of kaolinite‐urea nanocomposites via coupled DMSO‐hydroxyaluminum oligomeric intermediates. Indian Journal of Materials Science, 2015(1), 920835.

https://doi.org/10.1155/2015/920835 DOI: https://doi.org/10.1155/2015/920835

Sempeho, S., Lugwisha, E., & Akwilapo, L. (2012). Suitability of kaolin and quartz from Pugu and feldspar from Morogoro as raw materials for the production of dental porcelain (Master's thesis, University of Dar es Salaam, Dar es Salaam, Tanzania).

Theng, B. K. (2024). The chemistry of clay-organic reactions. CRC Press. https://doi.org/10.1201/9781003080244 DOI: https://doi.org/10.1201/9781003080244

Thomas, J. (1984). Physico-chemical aspects of intercalation phenomena. In Physics and Chemistry of Electrons and Ions in Condensed Matter (pp. 521-543). Springer.

https://doi.org/10.1007/978-94-009-6440-2_40 DOI: https://doi.org/10.1007/978-94-009-6440-2_40

Tunega, D., & Zaoui, A. (2020). Mechanical and bonding behaviors behind the bending mechanism of kaolinite clay layers. The Journal of Physical Chemistry C, 124(13), 7432-7440.

https://doi.org/10.1021/acs.jpcc.9b11274 DOI: https://doi.org/10.1021/acs.jpcc.9b11274

Voorhees, P. W. (1985). The theory of Ostwald ripening. Journal of Statistical Physics, 38, 231-252. https://doi.org/10.1007/BF01017860 DOI: https://doi.org/10.1007/BF01017860

Zhang, L.-L., Zheng, Y.-Y., Wei, P.-C., Diao, Q.-F., & Yin, Z.-Y. (2021). Nanoscale mechanical behavior of kaolinite under uniaxial strain conditions. Applied Clay Science, 201, 105961.

https://doi.org/10.1016/j.clay.2020.105961 DOI: https://doi.org/10.1016/j.clay.2020.105961

Downloads

Published

2025-02-08

How to Cite

Siafu, S. I. (2025). Achieving Stable Intercalation States upon Optimizing Intercalation Reactions Involving Kaolinite Inter-Layer Spaces. SCIENCE MUNDI, 5(1), 1–7. https://doi.org/10.51867/scimundi.5.1.1