Determination of water flow rate for the optimal biogas purification using water scrubbing technology at ambient temperature (23 0C)

https://doi.org/10.51867/scimundi.5.2.18

Authors

Keywords:

Biogas Purification, Central Composite Design, Optimization, Response Surface Methodology, Water Flow Rate, Water Scrubbing

Abstract

Biogas has been proven to be a sustainable substitute for fossil fuel-based energy systems. It comprises mainly of CH4, CO2, H2S, and water vapour. Biogas purification is crucial for making the gas suitable for various applications in the renewable energy sector. Water scrubbing has been widely used for enriching the methane percentage. Determining the optimal water flow rate in biogas scrubbing is crucial for enhancing methane content and reducing carbon dioxide and hydrogen sulfide impurities. Various studies have identified specific water flow rates that maximize efficiency in different scrubbing systems. This study focused on determining the water flow rate (WFR) required for the optimal biogas purification using water scrubbing technology. The study applied Response Surface Methodology (RSM), specifically Central Composite Design (CCD) in the design of the experiment (DoE) to optimize the water flow rate (WFR). WFR was varied at the rates of 3.5, 4.0, 4.5, 5.0, and 5.5 litres per hour (l/hr). The study used Design Expert software version 13 in the analysis of results. This study found that the highest methane enrichment of 91.45% was attained at the WFR of 5.0 litres per hour.

Downloads

Download data is not yet available.
Dimensions

Andriani, D., Wresta, A., Atmaja, T. D., & Saepudin, A. (2013). A review on optimization production and upgrading biogas through CO₂ removal using various techniques. Applied Biochemistry and Biotechnology, 172(4), 1909-1928. https://doi.org/10.1007/s12010-013-0652-x DOI: https://doi.org/10.1007/s12010-013-0652-x

Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology, 227, 335-344. https://doi.org/10.1016/j.biortech.2016.12.073 DOI: https://doi.org/10.1016/j.biortech.2016.12.073

Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., & Iyyappan, J. (2018). RETRACTED: Biogas production-A review on composition, fuel properties, feedstock and principles of anaerobic digestion. Renewable and Sustainable Energy Reviews, 90, 570-582. https://doi.org/10.1016/j.rser.2018.03.093 DOI: https://doi.org/10.1016/j.rser.2018.03.093

Budzianowski, W. M. (2016). A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renewable and Sustainable Energy Reviews, 54, 1148-1171. https://doi.org/10.1016/j.rser.2015.10.054 DOI: https://doi.org/10.1016/j.rser.2015.10.054

Daniel-Gromke, J., Rensberg, N., Denysenko, V., Stinner, W., Schmalfuß, T., Scheftelowitz, M., Nelles, M., & Liebetrau, J. (2018). Current developments in production and utilization of biogas and biomethane in Germany. Chemie Ingenieur Technik, 90(1-2), 17-35. https://doi.org/10.1002/cite.201700077 DOI: https://doi.org/10.1002/cite.201700077

Das, J., Ravishankar, H., & Lens, P. N. L. (2022). Biological biogas purification: Recent developments, challenges and future prospects. Journal of Environmental Management, 304, 114198. https://doi.org/10.1016/j.jenvman.2021.114198 DOI: https://doi.org/10.1016/j.jenvman.2021.114198

Gantina, T. M., Iriani, P., Maridjo, & Wachjoe, C. K. (2020). Biogas purification using water scrubber with variations of water flow rate and biogas pressure. Journal of Physics: Conference Series, 1450, 012011. https://doi.org/10.1088/1742-6596/1450/1/012011 DOI: https://doi.org/10.1088/1742-6596/1450/1/012011

Hirkude, J., & Padalkar, A. S. (2014). Experimental investigation of the effect of compression ratio on performance and emissions of CI engine operated with waste fried oil methyl ester blend. Fuel Processing Technology, 128, 367-375.

https://doi.org/10.1016/j.fuproc.2014.07.026 DOI: https://doi.org/10.1016/j.fuproc.2014.07.026

Jiang, L., Xin, Y., Chou, I.-M., & Sun, R. (2020). Raman spectroscopic measurements of H₂S solubility in pure water over a wide range of pressure and temperature and a refined thermodynamic model. Chemical Geology, 555, 119816.

https://doi.org/10.1016/j.chemgeo.2020.119816 DOI: https://doi.org/10.1016/j.chemgeo.2020.119816

Kapoor, R., Subbarao, P. M. V., & Vijay, V. K. (2019). Integration of flash vessel in water scrubbing biogas upgrading system for maximum methane recovery. Bioresource Technology Reports, 7, 100251. https://doi.org/10.1016/j.biteb.2019.100251 DOI: https://doi.org/10.1016/j.biteb.2019.100251

Karmoker, J. R., Hasan, I., Ahmed, N., Saifuddin, M., & Reza, M. S. (2019). Development and optimization of acyclovir loaded mucoadhesive microspheres by Box-Behnken design. Dhaka University Journal of Pharmaceutical Sciences, 18(1), 1-12.

https://doi.org/10.3329/dujps.v18i1.41421 DOI: https://doi.org/10.3329/dujps.v18i1.41421

Mamun, M. R. A., & Torii, S. (2015). Removal of hydrogen sulfide (H₂S) from biogas using zero-valent iron. Journal of Clean Energy Technologies, 3(6), 428-432. https://doi.org/10.7763/jocet.2015.v3.236 DOI: https://doi.org/10.7763/JOCET.2015.V3.236

Mugagga, G. R., Omosa, I. B., & Thoruwa, T. (2022). Optimization and analysis of a low-pressure water scrubbing biogas upgrading system via the Taguchi and response surface methodology approaches. International Journal of Renewable Energy Development, 12(1), 99-110.

https://doi.org/10.14710/ijred.2023.48269 DOI: https://doi.org/10.14710/ijred.2023.48269

Nock, W. J., Walker, M., Kapoor, R., & Heaven, S. (2014). Modeling the water scrubbing process and energy requirements for CO₂ capture to upgrade biogas to biomethane. Industrial & Engineering Chemistry Research, 53(32), 12783-12792. https://doi.org/10.1021/ie501280p DOI: https://doi.org/10.1021/ie501280p

Pugalendhi, E. A., & Boopathi, G. (2017). Biogas purification using coconut shell based granular activated carbon by pressure swing adsorption. International Journal of Current Microbiology and Applied Sciences, 6(4), 1178-1183.

https://doi.org/10.20546/ijcmas.2017.604.144 DOI: https://doi.org/10.20546/ijcmas.2017.604.144

Quanhong, L., & Caili, F. (2005). Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chemistry, 92(4), 701-706. https://doi.org/10.1016/j.foodchem.2004.08.042 DOI: https://doi.org/10.1016/j.foodchem.2004.08.042

Sahota, S., Shah, G., Ghosh, P., Kapoor, R., Sengupta, S., Singh, P., Vijay, V., Sahay, A., Vijay, V. K., & Thakur, I. S. (2018). Review of trends in biogas upgradation technologies and future perspectives. Bioresource Technology Reports, 1, 79-88.

https://doi.org/10.1016/j.biteb.2018.01.002 DOI: https://doi.org/10.1016/j.biteb.2018.01.002

Salave, H. S. (2017). Design, development and experimental investigation on various biogas upgrading techniques. IOSR Journal of Mechanical and Civil Engineering, 17(03), 55-60. https://doi.org/10.9790/1684-17010035560 DOI: https://doi.org/10.9790/1684-17010035560

Srichat, A., Suntivarakorn, R., & Kamwilaisak, K. (2017). A development of biogas purification system using calcium hydroxide and amine solution. Energy Procedia, 138, 441-445. https://doi.org/10.1016/j.egypro.2017.10.196 DOI: https://doi.org/10.1016/j.egypro.2017.10.196

Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., & Yu, X. (2015). Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renewable and Sustainable Energy Reviews, 51, 521-532. https://doi.org/10.1016/j.rser.2015.06.029 DOI: https://doi.org/10.1016/j.rser.2015.06.029

Tippayawong, N., & Thanompongchart, P. (2010). Biogas quality upgrade by simultaneous removal of CO₂ and H₂S in a packed column reactor. Energy, 35(12), 4531-4535. https://doi.org/10.1016/j.energy.2010.04.027 DOI: https://doi.org/10.1016/j.energy.2010.04.014

Veza, I., Spraggon, M., Rizwanul Fattah, I. M., & Idris, M. (2023). Response surface methodology (RSM) for optimizing engine performance and emissions fueled with biofuel: Review of RSM for sustainability energy transition. Results in Engineering, 18, 101213.

https://doi.org/10.1016/j.rineng.2023.101213 DOI: https://doi.org/10.1016/j.rineng.2023.101213

Vijay, V. K., Chandra, R., Subbarao, P. M., & Kapdi, S. S. (2006). Biogas purification and bottling into CNG cylinders: Producing Bio-CNG from biomass for rural automotive applications. The 2nd Joint International Conference on "Sustainable Energy and Environment".

Zabava, B. S., Voicu, G., Paraschiv, G., Dincă, M., Ungureanu, N., Ionescu, M., & Vlăduț, V. (2018). Advanced methods of biogas purification-a review. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series, 47(2), 470-475.

Published

2025-10-21

How to Cite

Mutobera, C. S., Masinde, B. H., & Osore, E. E. (2025). Determination of water flow rate for the optimal biogas purification using water scrubbing technology at ambient temperature (23 0C). SCIENCE MUNDI, 5(2), 192–201. https://doi.org/10.51867/scimundi.5.2.18