Graph Numbers and Distance Related Parameters of Zero Divisor Graphs
DOI:
https://doi.org/10.51867/scimundi.mathematics.4.2.8Keywords:
Cyclic structures, Weiner index, Zagreb indexAbstract
Distance-related parameters have applications in the field of pharmaceutical chemistry, network discovery, robot navigation, and optimizations. Cyclic structures exhibit significant topological features that have become important research areas in the field of computer science and mathematics. Due to the inherent algebraic relationship between graph numbers and distance related parameters, this paper characterizes variants of distance related parameters and graph numbers associated with the zero divisor graphs akin to cyclic structures obtained from classes of completely primary finite rings. In particular, we investigate the local fractional metric dimension and provide certain results concerning graph indices namely the Weiner index and the Zagreb index.
Downloads
References
Anderson, D. F., and Livingstone, P. S. (1999). The zero divisor graph of a commutative ring. Journal of Algebra, 217(2), 434-447. https://doi.org/10.1006/jabr.1998.7840 DOI: https://doi.org/10.1006/jabr.1998.7840
Anderson, D. F., and Naseer, M. (1993). Beck's coloring of a commutative ring. Journal of Algebra, 159, 500-514. https://doi.org/10.1006/jabr.1993.1171 DOI: https://doi.org/10.1006/jabr.1993.1171
Beck, I. (1998). Coloring of commutative rings. Journal of Algebra, 116(1), 208-226. https://doi.org/10.1016/0021-8693(88)90202-5 DOI: https://doi.org/10.1016/0021-8693(88)90202-5
Beerliová, Z., Eberhard, F., and Erlebach, T. (2006). Network discovery and verification. IEEE Journal on Selected Areas in Communications, 24(12), 2168-2181. https://doi.org/10.1109/JSAC.2006.884015 DOI: https://doi.org/10.1109/JSAC.2006.884015
Chartrand, G., Eroh, L., Johnson, M. A., and Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105(1-3), 99-113. https://doi.org/10.1016/S0166-218X(00)00198-0 DOI: https://doi.org/10.1016/S0166-218X(00)00198-0
Chikunji, J. (2005). A classification of cube radical zero completely primary finite rings. Demonstratio Mathematica, 38(1), 7-20.
https://doi.org/10.1515/dema-2005-0103 DOI: https://doi.org/10.1515/dema-2005-0103
Currie, J., and Oellermann, O. R. (2001). The metric dimension and metric independence of a graph. Journal of Combinatorial Mathematics and Combinatorial Computing, 39, 157-167.
Feng, M., and Wang, K. (2013). On the metric dimension and fractional metric dimension for hierarchical product of graphs. Applicable Analysis and Discrete Mathematics, 7(2), 302-313. https://doi.org/10.2298/AADM130521009F DOI: https://doi.org/10.2298/AADM130521009F
Hezron, W., Owino, M. O., and Moset, N. G. (2022). Classification of units of five radical zero completely primary finite rings with invariant orders of second Galois ring module generators. Asian Research Journal of Mathematics, 18(6), 70-78. https://doi.org/10.9734/arjom/2022/v18i630385 DOI: https://doi.org/10.9734/arjom/2022/v18i630385
Harary, F., and Melter, R. A. (1976). On the metric dimension of a graph. Ars Combinatoria, 2, 191-195.
Jamil, F., Kashif, A., Zafar, S., and Ojiema, M. O. (2023). Local fractional strong metric dimension of certain complex networks. Complexity, 2023(1), Article ID 3635342. https://doi.org/10.1155/2023/3635342 DOI: https://doi.org/10.1155/2023/3635342
Khuller, S., Raghavachari, B., and Rosenfeld, A. (1996). Landmarks in graphs. Discrete Applied Mathematics, 70(3), 217-229. https://doi.org/10.1016/0166-218X(95)00106-2 DOI: https://doi.org/10.1016/0166-218X(95)00106-2
Pirzada, S., and Raja, R. (2017). On the metric dimension of a zero-divisor graph. Communications in Algebra, 45(4), 1399-1408.
https://doi.org/10.1080/00927872.2016.1175602 DOI: https://doi.org/10.1080/00927872.2016.1175602
Raja, R., Pirzada, S., and Redmond, S. P. (2016). On locating numbers and codes of zero-divisor graphs associated with commutative rings. Journal of Algebra and Its Applications, 15(1), Article ID 1650014. https://doi.org/10.1142/S0219498816500146 DOI: https://doi.org/10.1142/S0219498816500146
Redmond, S. P. (2002). The zero-divisor graph of a non-commutative ring. International Journal of Commutative Rings, 1(4), 203-211.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Eliud Mmasi, Michael Onyango Ojiema, Vincent Marani
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.