On Some Aspects Of Degenerated Cyclic Codes

Authors

  • Boaz Simatwo Kimtai Department of Mathematics and Actuarial Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya https://orcid.org/0000-0002-1314-6119
  • Lao Hussein Mude Department of Pure and Applied Sciences, Kirinyaga University, P. O. Box 143-10300, Kerugoya, Kenya
  • Patrick Wanjala Makila Department of Mathematics and Computer Science, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya https://orcid.org/0009-0009-7454-2922

DOI:

https://doi.org/10.51867/scimundi.mathematics.4.2.6

Keywords:

Algebraic Coding, Cyclic Codes, Generator Polynomials, Linear Block Codes

Abstract

Degenerated cyclic codes constitute a fascinating area of study within coding theory, offering profound insights into the realm of algebraic structures and their applications in error detection and correction. In this work, we delve into various aspects of degenerated cyclic codes, aiming to provide a comprehensive understanding of their properties and significance. We begin by elucidating the fundamental concepts underlying cyclic codes and their degeneration, establishing a mathematical framework for analysis. Subsequently, we explore the algebraic structure of degenerated cyclic codes, investigating their generator and parity-check matrices, as well as their relationships with conventional cyclic codes. Moreover, we investigate the decoding algorithms tailored for degenerated cyclic codes, evaluating their efficiency and performance under different error conditions. Furthermore, we examine the applications of degenerated cyclic codes in practical scenarios, highlighting their utility in diverse domains such as telecommunications, storage systems, and cryptography. Through theoretical analysis and numerical simulations, we demonstrate the efficacy and versatility of degenerated cyclic codes, thereby emphasizing their significance in modern information theory. Overall, this study contributes to the advancement of coding theory by shedding light on the intricacies of degenerated cyclic codes and paving the way for future research endeavors in this burgeoning field.

Downloads

Download data is not yet available.

References

Intan M. A., Djoko S., Aleams B., (2021). Cyclic codes from a sequence over finite fields. European Journal of Pure and Applied Mathematics, 14(3). https://doi.org/10.29020/nybg.ejpam.v14i3.3907 DOI: https://doi.org/10.29020/nybg.ejpam.v14i3.3907

Louis B (2014). On the generators of cyclic codes. International Journal of Pure and Applied Mathematics, 94(1):71-80. https://doi.org/10.12732/ijpam.v94i1.8 DOI: https://doi.org/10.12732/ijpam.v94i1.8

Richard E. B., (2003). Algebraic codes for data transmission. Cambridge University Press.

Steven T. D., Suat K., and Bahattin Y.(2012). Cyclic codes over r k. Designs, Codes and Cryptography, 63:113-126. https://doi.org/10.1007/s10623-011-9539-4 DOI: https://doi.org/10.1007/s10623-011-9539-4

Thomas E. and Victor Z. (2001). Codes on Euclidean spheres. Elsevier.

Olege F. (2019). On the generators of codes of ideals of the polynomial ring fn. In International Mathematical Forum, volume 14, 189-203.

https://doi.org/10.12988/imf.2019.9732 DOI: https://doi.org/10.12988/imf.2019.9732

David F.(1965) Concatenated codes (Technical Report No. 440). Massachusetts Institute of Technology, Research Laboratory of Electronics.

Lao H., Benard K., Patrick K., and Geoffrey M. (2018). On the number of cyclotomic cosets and cyclic codes over.

Florence J. M., and Neil J. A. (1977) The theory of error correcting codes," North-Holland mathematical library"." North-Holland Pub. Co. New York.

Jeffrey L.(1982). Computing Automorphism groups of error-correcting codes. IEEE Transactions on Information Theory, 28(3):496-511. https://doi.org/10.1109/TIT.1982.1056498 DOI: https://doi.org/10.1109/TIT.1982.1056498

San L. and Chaoping X.(2004) Coding theory: a first course. Cambridge university press.

Zhuojun L.(1998) A class of generalized cyclic codes. 1038:223-229.

Sergio R. L., Benigno R. P., and Steve S. (2009). Dual generalizations of the concept of cyclicity of codes. Adv. Math. Commun., 3(3), 227-234.

https://doi.org/10.3934/amc.2009.3.227 DOI: https://doi.org/10.3934/amc.2009.3.227

Rolando G. M. and Felipe Z. (2014). On the category of group codes. arXiv preprint arXiv:1409.6382.

Mattson J.(1985). Error control coding: Fundamentals and applications.

Biljana R. (2019). Cyclic codes. In Sinteza 2019-International Scientific Conference on Information Technology and Data Related Research, Singidunum University, 465-471. https://doi.org/10.15308/Sinteza-2019-465-471 DOI: https://doi.org/10.15308/Sinteza-2019-465-471

Roth, R. M. (2006). Introduction to coding theory. IET Communications, 47(18-19), 4. https://doi.org/10.1017/CBO9780511808968 DOI: https://doi.org/10.1017/CBO9780511808968

Simatwo, K. B., Mati, R. F., and Karieko, O. R. (2023). Enumeration of cyclic codes over GF (23). Journal of Advances in Mathematics and Computer Science, 38(9), 194-206. https://doi.org/10.9734/jamcs/2023/v38i91815

Nicolas S. (2000). Finding the permutation between equivalent linear codes: The support splitting algorithm. IEEE Transactions on Information Theory, 46(4):1193-1203. https://doi.org/10.1109/18.850662 DOI: https://doi.org/10.1109/18.850662

Kimtai B. S., Runji F. M., and Obogi R. K.(2023). Enumeration of cyclic codes over gf (23). Journal of Advances in Mathematics and Computer Science, 38(9),194-206. https://doi.org/10.9734/jamcs/2023/v38i91815 DOI: https://doi.org/10.9734/jamcs/2023/v38i91815

Gintaras S. (2000) Computing permutation groups of error-correcting codes. Lietuvos matematikos rinkinys, 40,320-328, 2000. https://doi.org/10.15388/LMR.2000.35170 DOI: https://doi.org/10.15388/LMR.2000.35170

Gintaras S.(2005) On degenerated cyclic codes. Lietuvos matematikos rinkinys, 45, 57-59. https://doi.org/10.15388/LMR.2005.24539 DOI: https://doi.org/10.15388/LMR.2005.24539

Qifu S. (2009). Network coding theory based on commutative algebra and matroids. PhD thesis, Chinese University of Hong Kong.

Downloads

Published

2024-08-06

How to Cite

Kimtai, B. S., Mude, L. H., & Makila, P. W. (2024). On Some Aspects Of Degenerated Cyclic Codes. SCIENCE MUNDI, 4(2), 49–60. https://doi.org/10.51867/scimundi.mathematics.4.2.6

Most read articles by the same author(s)