On Generalized Sums of Six, Seven and Nine Cube

Authors

  • Boaz Simatwo Kimtai Department of Mathematics and Actuarial Science, Kisii University, P. O. Box 408-40200, Kisii, Kenya https://orcid.org/0000-0002-1314-6119
  • Lao Hussein Mude Department of Pure and Applied Sciences, Kirinyaga University, P. O. Box 143-10300, Kerugoya, Kenya

DOI:

https://doi.org/10.51867/scimundi.3.1.14

Keywords:

Diophantine Equation, Sums of Six, Seven and Nine Cube

Abstract

Let u1, u2, u3,・・・ un be integers such that un − un−1 = un−1 − un−2 = ・ ・ ・ = a2 − a1 = d. In this article, the study of sums of cube in arithmetic progression is discussed. In particular, the study develops and introduces some generalized results on sums of six, seven and nine cube for any arbitrary integers in arithmetic sequences. The method of study involves analogy grounded on integer decomposition and factorization. The result in this study will prove the existing results on sums of cubes.

Downloads

Download data is not yet available.

References

Booker, A. (2017). A computational approach to the continuous and discrete weighted k-sum problem, Mathematics of Computation, 86(307), 2823-2833.

Christopher, A. D. (2016). A partition-theoretic proof of Fermat's Two Squares Theorem. Discrete Mathematics, 339(4), 1410-1411. https://doi.org/10.1016/j.disc.2015.12.002. DOI: https://doi.org/10.1016/j.disc.2015.12.002

Davenport, H. (1964). On Waring's problem for cubes.Acta Arithmetica, 9(2), 374-409. https://doi.org/10.4064/aa-9-1-3-12. DOI: https://doi.org/10.4064/aa-9-1-3-12

Euler, L. (1964). Observations on Diophantine Equations. Duke Mathematical Journal, 17(1), 255-268.

Heath-Brown, D. (1990). A one-sentence proof that every prime p ≡ 1mod4 is a sum of two squares. Amer. Math, 2(144). https://doi.org/10.2307/2323918.

Hilbert, D. (1901). Mathematische Probleme. Archiv der Mathematik und Physik, 1, 44-63.

Lagrange, J. (1984). Addition of four numbers in the sums of cubes,In Number Theory, Springer, Berlin, Heidelberg, 183-186.

Lao, H. (2022). On The Diophantine Equation ab(cd + 1) + L = u2 + v2 , Asian Research Journal of Mathematics, 18(9), 8-13, Article no.ARJOM.88102,ISSN: 2456-477X.

Lao, H. (2022). Some Formulae For Integer Sums of Two Squares, Journal of Advances in Mathematics and Computer Science, 37(4), 53-57, Article no. JAMCS.87824. https://doi.org/10.9734/jamcs/2022/v37i430448 DOI: https://doi.org/10.9734/jamcs/2022/v37i430448

Lao, H. (2023). Some Generalized Formula For Sums of Cube, Journal of Advances in Mathematics and Computer Science, Article no.JAMCS.101314,ISSN: 2456-9968, 37(8), 47-52. https://doi.org/10.9734/jamcs/2023/v38i81789 DOI: https://doi.org/10.9734/jamcs/2023/v38i81789

Lao, H., Maurice O., and Michael O., (2023). On The Sum of Three Square Formula. Mundi, 3, 2788-5844. https://doi.org/10.51867/scimundi.3.1.11 DOI: https://doi.org/10.51867/scimundi.3.1.11

Mahnaz. A., Ali S., (1990). On Quartic Diophantine Equation with Trivial Solutions in Gaussian Integers International Electronic Journal of Algebra, 31,134-142. https://doi.org/10.24330/ieja.964819 DOI: https://doi.org/10.24330/ieja.964819

Ramanujan, S. (1918). Highly Composite Numbers. Proceedings of the London Mathematical Society, 2(1), 75-78.

https://doi.org/10.1112/plms/s2-17.1.75 DOI: https://doi.org/10.1112/plms/s2-17.1.75

Zagier, D. (1990). A one-sentence proof that every prime p ≡ 1(mod4) is a sum of two squares. Amer. Math. Monthly, 97(144), 24-29. https://doi.org/10.2307/2323918 DOI: https://doi.org/10.2307/2323918

Downloads

Published

2023-12-13

How to Cite

Kimtai, B. S., & Mude, L. H. (2023). On Generalized Sums of Six, Seven and Nine Cube. SCIENCE MUNDI, 3(1), 135–142. https://doi.org/10.51867/scimundi.3.1.14

Most read articles by the same author(s)