On Generalized Sums of Six, Seven and Nine Cube
DOI:
https://doi.org/10.51867/scimundi.3.1.14Keywords:
Diophantine Equation, Sums of Six, Seven and Nine CubeAbstract
Let u1, u2, u3,・・・ un be integers such that un − un−1 = un−1 − un−2 = ・ ・ ・ = a2 − a1 = d. In this article, the study of sums of cube in arithmetic progression is discussed. In particular, the study develops and introduces some generalized results on sums of six, seven and nine cube for any arbitrary integers in arithmetic sequences. The method of study involves analogy grounded on integer decomposition and factorization. The result in this study will prove the existing results on sums of cubes.
Downloads
References
Booker, A. (2017). A computational approach to the continuous and discrete weighted k-sum problem, Mathematics of Computation, 86(307), 2823-2833.
Christopher, A. D. (2016). A partition-theoretic proof of Fermat's Two Squares Theorem. Discrete Mathematics, 339(4), 1410-1411. https://doi.org/10.1016/j.disc.2015.12.002. DOI: https://doi.org/10.1016/j.disc.2015.12.002
Davenport, H. (1964). On Waring's problem for cubes.Acta Arithmetica, 9(2), 374-409. https://doi.org/10.4064/aa-9-1-3-12. DOI: https://doi.org/10.4064/aa-9-1-3-12
Euler, L. (1964). Observations on Diophantine Equations. Duke Mathematical Journal, 17(1), 255-268.
Heath-Brown, D. (1990). A one-sentence proof that every prime p ≡ 1mod4 is a sum of two squares. Amer. Math, 2(144). https://doi.org/10.2307/2323918.
Hilbert, D. (1901). Mathematische Probleme. Archiv der Mathematik und Physik, 1, 44-63.
Lagrange, J. (1984). Addition of four numbers in the sums of cubes,In Number Theory, Springer, Berlin, Heidelberg, 183-186.
Lao, H. (2022). On The Diophantine Equation ab(cd + 1) + L = u2 + v2 , Asian Research Journal of Mathematics, 18(9), 8-13, Article no.ARJOM.88102,ISSN: 2456-477X.
Lao, H. (2022). Some Formulae For Integer Sums of Two Squares, Journal of Advances in Mathematics and Computer Science, 37(4), 53-57, Article no. JAMCS.87824. https://doi.org/10.9734/jamcs/2022/v37i430448 DOI: https://doi.org/10.9734/jamcs/2022/v37i430448
Lao, H. (2023). Some Generalized Formula For Sums of Cube, Journal of Advances in Mathematics and Computer Science, Article no.JAMCS.101314,ISSN: 2456-9968, 37(8), 47-52. https://doi.org/10.9734/jamcs/2023/v38i81789 DOI: https://doi.org/10.9734/jamcs/2023/v38i81789
Lao, H., Maurice O., and Michael O., (2023). On The Sum of Three Square Formula. Mundi, 3, 2788-5844. https://doi.org/10.51867/scimundi.3.1.11 DOI: https://doi.org/10.51867/scimundi.3.1.11
Mahnaz. A., Ali S., (1990). On Quartic Diophantine Equation with Trivial Solutions in Gaussian Integers International Electronic Journal of Algebra, 31,134-142. https://doi.org/10.24330/ieja.964819 DOI: https://doi.org/10.24330/ieja.964819
Ramanujan, S. (1918). Highly Composite Numbers. Proceedings of the London Mathematical Society, 2(1), 75-78.
https://doi.org/10.1112/plms/s2-17.1.75 DOI: https://doi.org/10.1112/plms/s2-17.1.75
Zagier, D. (1990). A one-sentence proof that every prime p ≡ 1(mod4) is a sum of two squares. Amer. Math. Monthly, 97(144), 24-29. https://doi.org/10.2307/2323918 DOI: https://doi.org/10.2307/2323918
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Boaz Simatwo Kimtai, Hussein Mude Lao

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.